

	BRONZE	SILVER	GOLD	PLATINUM
	D and below= GCSE 1,2,3	C= GCSE 4	C/B= GCSE 5,6	A/A*= GCSE 7,8,9
Biology	Explain that cells are very small and a microscope is needed to see them.	Demonstrate an understanding of the scale and size of cells.	Carry out calculations involving magnification, real size and image size	Carry out calculations involving magnification, real size and image size using
	Describe how the main sub- cellular structures, including	Describe how the structure of different types of cell relate to their function in a	using the formula: magnification = size of image/size of real object.	the formula: magnification = size of image/size of real object and using standard form if needed
	membranes, mitochondria, chloroplasts in plant cells and plasmids in bacterial	tissue, an organ or organ system, or the whole organism.	Explain how the structure of different types of cell relate to their function in a	Explain the importance of cell differentiation.
	cells are related to their functions.	Explain how the main sub- cellular structures,	tissue, an organ or organ system, or the whole organism.	Recognise and describe situations in given contexts
	are made of DNA molecules, that chromosomes contain many genes and that they	membranes, mitochondria, chloroplasts in plant cells and	Give examples of cell differentiation.	Apply knowledge and explain how stem cells can
	are normally found in pairs.	plasmids in bacterial cells are related to their functions.	Explain how electron microscopy has increased understanding of	be used to treat diabetes and paralysis.
	stem cells in embryos and in adult animals.	Outline how microscopy	sub-cellular structures.	Suggest advantages and disadvantages of cloning for rare species, using the cells
	State the difference between therapy and	developed over time.	overall stages of the cell cycle but do not need to	in medicine and cloning crop plants for disease
	State some possible uses for	to divide in order for an organism to grow	of the mitosis stage.	evaluation of the ethical and religious objections.
	stem cells.	(e.g. human zygote to human adult).	Explain the function of stem cells in embryos, in	Explain the need for carbon dioxide and oxygen to

Describe the process of	Describe the function of	adult animals and in the	diffuse in gas exchange and
diffusion and give	stem cells in	meristems in plants.	for urea to diffuse from cells
some of the factors that	embryos, in adult animals		to blood plasma to be
affect the rate of	and in the	Describe some beneficial	excreted at the kidney.
diffusion.	meristems in plants.	uses of stem cells in both	
		animals and plants and	Explain how cells and
	Explain what therapeutic	state the sources of these	organs are adapted to
	means and explain	stem cells	maximise diffusion.
	why it might be a better		
	option than organ	Describe what therapeutic	Define osmosis and explain
	transplant or other forms	means and evaluate the	its importance in living
	of invasive	risks of organ transplant or	things.
	surgery.	other forms of invasive	
		surgery versus therapy.	Define active transport and
	Suggest uses and benefits		explain why active transport
	of using cloning.	Outline advantages of	is needed to absorb sugar in
		cloning for rare species,	the small intestine for
	Define diffusion and know	using the cells in medicine	respiration and ions from
	that three factors that	and cloning crop plants for	the soil in root hair cells.
	affect the rate at which it	disease resistance and give	
	happens.	some of the risks	
		associated with cloning.	
	Explain why cells need to		
	be small in order to	Explain the need for carbon	
	maximise the rate of	dioxide and oxygen to	
	diffusion.	diffuse in gas exchange.	
	Define osmosis and active	Describe how lungs, gills,	
	transport and give	intestines and leaves are	
	examples of their	adapted to maximise	
	occurrence in plants and	airrusion.	
	animais.		

			Define osmosis give an example of its use in living things. Define active transport and explain how active transport is used to absorb sugar in the small intestine and ions from the soil in	
			root hair cells.	
Chemistry	Define the terms element and atom, they will understand that the periodic table lists all of the elements and use the periodic table to find the symbols for the elements.	Explain the difference between a compound and a mixture; recognise substances as elements, compounds or mixtures from particle diagrams.	Explain that filtration allows an insoluble solid to be separated from a liquid and crystallisation allows a soluble solid to be separated from a liquid.	Suggest appropriate separation techniques for different mixtures based on the physical properties of the compounds in the mixture.
	Know that filtration, crystallisation, distillation and chromatography are used to separate mixtures. Describe the structure of an atom and identify the subatomic particles.	Outline the methods for crystallisation, distillation, filtration and separation. Describe the plum pudding model for the atom and how it I different to the modern model of the atom.	Explain how that chromatography is used for separation of mixtures of coloured compounds. Explain how distillation allows for the separation of two liquids with different boiling temperatures.	Explain how and why the atomic model has developed as a result of the discoveries of the subatomic particles. Explain the conclusions drawn from Rutherford's scattering experiments.
	Know that the modern periodic table was first proposed by Mendeleev. State some differences between the modern	Know the masses, charges and locations of the subatomic particles. Calculate the numbers of protons, neutrons and	Describe the scattering experiments performed by Rutherford and outline the discoveries of other subatomic particles and	Explain why the overall charge on an atom is neutral.

periodic table and	electrons in an atom. Work	their arrangement in the	Explain the link between
Mendeleev's periodic table.	out the electron	atom.	period or group number and
	configuration for different		electron configuration.
State some typical	atoms.	Calculate the numbers of	
properties of metals and		protons, electrons and	Explain why different
non metals.	Outline developments in	neutrons in different	isotopes still have the same
	the structure of the	atoms, give the definition	chemical properties.
Identify metals and non	periodic table and know	of isotopes and calculate	
metals based on the	how Mendeleev arranged	the relative atomic masses	Suggest how Mendeleev
position of elements in the	the elements.	for different elements	convinced people to accept
periodic table.		given the % abundance of	his periodic table.
	State the differences	their isotopes.	
Know what an ion is.	between the modern		Suggest how Mendeleev
	periodic table and	Explain how Mendeleev	predicted the properties of
Know that group 0 elements	Mendeleev's periodic	ordered and grouped the	the missing elements.
are unreactive.	table.	elements and why he	
		needed to leave gaps.	Suggest how Mendeleev's
Define a covalent bond.	Describe the structure and		periodic table developed
	bonding of metals.	State and give reasons for	with our understanding of
Know that diamond and		the differences between	the subatomic particles in
graphite are giant covalent	Identify group 1 and	the modern periodic table	an atom.
structures.	transition metal and	and Mendeleev's periodic	
	describe some differences	table.	Explain how the reactivity of
Describe what a polymer is.	between them.		group 1 & 7 elements
		Explain the properties of	changes as you go down the
	Describe the reactions of	metals based on their	groups, by considering their
	group 1 metals with water	structure and bonding.	electron configurations, and
	and the displacement		give examples of their
	reactions of group 7	Describe the differences	reactions to exemplify these
	elements.	between the physical and	trends.
		chemical properties of	
	Describe how metals and	group 1 and transition	Predict reactions of fluorine
	non metals form ions and	metals.	and astatine based on

	the charges on the ions	Give the electron	knowledge of the other
	formed.	configurations for group 1	halogens.
		and 7 elements and use	5
	Explain why group 0	them to explain why these	Relate the charges on ions
	elements are unreactive.	elements are grouped	to the position of elements
		together.	in the periodic table.
	Describe the structure of		
	ionic compounds.	State how the reactivity of	Draw dot and cross
		group 1 & group 7	diagrams for ionic
	Define and recognise	elements changes as you	compounds formed by
	covalent bonding. Identify	go down the group.	metals in Groups 1 and 2
	simple molecules.		with non-metals in Groups 6
		Give the electron	and 7.
	Recognise giant covalent	configurations for ions	
	structures from diagrams	formed from group 1, 2, 6	Work out the empirical
	showing their bonding and	& 7 elements and their	formula of an ionic
	structure.	charges.	compound from a given
			model or diagram that
	State properties of	Draw dot and cross	shows the ions in the
	diamond and graphite and	diagrams for the formation	structure.
	give some uses of these	of compounds between	
	compounds.	group 1 & 7 elements and	Use the idea that
		describe the electron	intermolecular forces are
	Know that graphite is	transfers taking place as	weak compared with
	similar to metals in that it	they form.	covalent bonds to explain
	has delocalised electrons.		the bulk properties of
		Students should be able to	simple molecular
	Know that graphene and	recognise common	substances and giant
	fullerenes are also	substances that consist of	covalent structures.
	structures made of carbon.	small molecules from their	
		chemical formula.	Explain the uses of diamond
	Recognise polymers from		and graphite in relation to
	diagrams showing their	Draw dot and cross	their properties.
	bonding and structure.	diagrams for the molecules	

			of hydrogen, chlorine	Explain the properties of
			ovygen nitrogen bydrogen	graphene and fullerenes in
			chlorido water ammonia	torms of their structure and
			chioride, water, annonia	banding
			and methane.	bonding.
			E determente en el transfer	
			Explain the properties of	Outline the limitations of
			diamond and graphite in	using dot and cross, ball and
			terms of their structure and	stick, two and three-
			bonding.	dimensional diagrams to
				represent molecules or
			Recognise graphene and	giant structures.
			fullerenes from diagrams	
			and descriptions of their	
			bonding and structure and	
			give examples of the uses	
			of fullerenes, including	
			carbon nanotubes.	
Physics	State the law of	Define energy as the	Rearrange equations to	Explain what the internal
	conservation of energy.	capacity of a system to do	calculate work done.	energy of a system is.
		work	energy stored in a spring	
	Give the units for energy		gravitational notential	Explain how doubling
	mass height force nower	Describe energy transfers	energy kinetic energy and	velocity affects the kinetic
	sneed temperature and	and draw energy flow	heat energy transferred	energy of a moving object
	work dono	diagrams	heat energy transferred.	energy of a moving object.
	work done.	ulagrafits.	Outline a practical to	Coloulate caring constant
	Cive the veletievelie		Outline a practical to	
	Give the relationship	Use equations to calculate	investigate the heat energy	from a graph of force vs
	between force and	work done, energy stored	transferred to a substance.	extension.
	extension using a force -	in a spring, gravitational		
	extension graph.	potential energy, kinetic	Explain the relationship	Calculate the energy stored
		energy and heat energy	between the extension of a	in a spring using a force -
	Interpret Sankey diagrams	transferred.	spring and the force	extension graph.
	to find total input, useful		applied.	
	output and wasted energy.	Describe the relationship		Outline how specific heat
		between the extension of a		capacity can be investigated

Name most of the different	spring and the force	Recall the equation to	and factors that may affect
circuit symbols.	applied.	calculate power and	the reliability of the results.
		rearrange and use it to	
State the symbol and units	Describe what specific heat	calculate the power of	Compare the efficiency of
for current, charge and	capacity is.	different systems, energy	different systems and
time.		transferred or time.	suggest ways to improve
	Define power.		their efficiency based on
State the quantities and		Explain the meaning of the	reducing the "waste"
units of voltage, current and	Draw and interpret Sankey	term efficiency.	energy.
resistance.	diagrams.		
		Build a parallel circuit using	Explain to others how to
State that the longer a wire	Define efficiency and	a circuit diagram and can	build a series and parallel
the greater the resistance.	calculate it as a percentage	draw a parallel circuit from	circuit but without just
	or decimal.	looking at it.	telling them what to do.
Draw the I-v graph for an			
ohmic conductor and bulb.	Build a simple series circuit	Explain how we are able to	Use different models to
	using a circuit diagram as a	measure electrical current	explain what an electrical
Draw the R-T graph and R-	guide.	and use the Q=It equation.	current is and what is
Light intensity graph for the			flowing around
two components.	Draw a simple series circuit	Explain the relationship	
	using circuit symbols.	between V, I and R.	Calculate the resistance of a
State that the more resitors			component using the
in a series circuit the greater	Explain what current and	Can explain why the	gradient of an I-V graph by
the total resistance.	charge are.	alternative units for volts	taking the reciprocal
		are J/C.	
Explain that the more	Use the V=IR equation to		Suggest how changing the
resistors in parallel the	solve problems.	Explain the importance of	area would affect the
lower the resistance.		keeping the temperature	resistance along with sound
	Explain why the resistance	constant when measuring	reasoning why
Draw the structure of an	increases with increased	resistance in terms of the	
atom.	length.	oscillations of ions.	Explain the physics behind
			the shape of the diodes
State what the plum	Draw the I-V graph for a	Draw the V-I graphs for	graph
pudding model was.	diode.	diodes, thermistors, LDRs	

	Explain why increasing heat	and filament bulbs and	Explain what an I-V graph
State that radioactive decay	increases the resistance.	explain the difference and	would look like for a
is random.		reason for the alternative	thermistor.
	Calculate the resistance of	scales.	
State the units of activity.	a series circuit.		Explain why adding resistors
		Can explain the shape of	in series increases the total
State the three types of	Calculate the total	the filament graphs	resistance but adding them
radiation.	resistance for simple whole		in parallel reduces the total
	integer answers for	Explain how these	resistance.
Calculate the mass number	resistance.	components would be used	
and proton number when		to design practical circuits.	Explain what isotopes are
given a nuclear equation	State what the numbers on		and how they are similar
with the alpha and beta	a chemical symbol	Calculate the resistance of	and different they are.
particles already written	represent and can	parallel resistors.	
out.	therefore state the number		Explain why the different
	of protons and electrons in	Calculate the number of	forms of radiation are best
State what the half life of a	a neutral atom.	neutrons in an atom and	for different purposes.
radioactive source is.		explain why the calculation	
	Explain how the discovery	works.	Identify the daughter nuclei
State what radioactive	of the electron led to the		from completed nuclear
contamination is and the	plum pudding model.	Explain what happens to	equations.
associated hazards.		the charge of the atom if it	
	State the device used for	loses or gains electrons.	Explain why gamma decay
	detecting radiation.		does not result in a mass
		Explain how the gold	change.
	Explain what it means to be	scattering experiment led	
	ionising.	to the current atomic	Calculate the net decline
		model.	expressed as a ratio in a
	Complete nuclear		radioactive emission after a
	equations when given all	State the penetration	given number of half-lives.
	the products but not their	power and ionising	
	masses and proton	properties of the three	Explain the importance of
	numbers.	types of radiation.	studies into the effects of
			radiation on humans and

	Use a graph to find the	Select the best type of	how and why peer review is
	halph life of a source.	radiation for different	an important aspect of any
		uses.	study into issues like this.
	Calculate the passage of		
	time using a change in	Complete a nuclear	
	activity and knowledge of	equation if told that an	
	the half life.	atom decays with alpha,	
		beta or gamma decay.	
	State what irradiation is		
	and isn't.	Use data of penetration	
		and half life to identify a	
	Compare the hazards	radioactive source.	
	associated with		
	contamination and	Explain why the	
	irradiation.	precautions suggested	
		would be effective in terms	
	State suitable precautions	of the penetrating and	
	to take when using	ionising properties of the	
	radioactive substances.	radiation.	