

AQA TRILOGY Chemistry (8464) from 2016 Topics T5.1 Atomic structure and the periodic table (Paper 1)

o ic	Student Checklist	R	Α	G	
	State that everything is made of atoms and recall what they are				
<u> </u>	Describe what elements and compounds are				
2	State that elements and compounds are represented by symbols; and use chemical symbols and formulae to represent elements and compounds				
	Write word equations and balanced symbol equations for chemical reactions, including using appropriate state symbols				
5	HT ONLY: Write balanced half equations and ionic equations				
	Describe what a mixture is				
	Name and describe the physical processes used to separate mixtures and suggest suitable separation techniques				
	Describe how the atomic model has changed over time due to new experimental evidence, inc discovery of the atom and scattering experiments				
	(inc the work of James Chadwick) Describe the difference between the plum pudding model of the atom and the nuclear model of the atom				
	State the relative charge of protons, neutrons and electrons and describe the overall charge of an atom				
f 2 ()	State the relative masses of protons, neutrons and electrons and describe the distribution of mass in an atom				
	Calculate the number of protons, neutrons and electrons in an atom when given its atomic number and mass number				
	Describe isotopes as atoms of the same element with different numbers of neutrons				
	Define the term relative atomic mass and why it takes into account the abundance of isotopes of the element				
	Calculate the relative atomic mass of an element given the percentage abundance of its isotopes				
400	Describe how electrons fill energy levels in atoms, and represent the electron structure of elements using diagrams and numbers				
	Recall how the elements in the periodic table are arranged				
	Describe how elements with similar properties are placed in the periodic table				
	Explain why elements in the same group have similar properties and how to use the periodic table to predict the reactivity of elements				
) -	Describe the early attempts to classify elements				
	Explain the creation and attributes of Mendeleev's periodic table				

					_
	Identify metals and non-metals on the periodic table, compare and contrast				
	their properties				<u> </u>
	Explain how the atomic structure of metals and non-metals relates to their				l
	position in the periodic table				<u> </u>
	Describe nobel gases (group 0) and explain their lack of reactivity				
	Describe the properties of noble gases, including boiling points, predict				
	trends down the group and describe how their properties depend on the				l
	outer shell of electrons				L
	Describe the reactivity and properties of group 1 alkali metals with reference				l
	to their electron arrangement and predict their reactions				
	Describe the properties of group 7 halogens and how their properties relate				l
	to their electron arrangement, including trends in molecular mass, melting				1
	and boiling points and reactivity				
	Describe the reactions of group 7 halogens with metals and non-metals				
Q/	A TRILOGY Chemistry (8464) from 2016 Topics T5.2 Bonding, structure, and the				_
	erties of matter (Paper 1)				L
0	Student Checklist	R	Α	G	
ic					L
	Describe the three main types of bonds: ionic bonds, covalent bonds and				l
	metallic bonds in terms of electrostatic forces and the transfer or sharing of				l
	electrons				L
	Describe how the ions produced by elements in some groups have the				l
	electronic structure of a noble gas and explain how the charge of an ion				l
	relates to its group number				L
_	Describe the structure of ionic compounds, including the electrostatic forces				l
מב	of attraction, and represent ionic compounds using dot and cross diagrams				L
Ē	Describe the limitations of using dot and cross, ball and stick, two and three-				l
Ovaient and metallic	dimensional diagrams to represent a giant ionic structure				
=	Work out the empirical formula of an ionic compound from a given model or				l
ב ב	diagram that shows the ions in the structure				l
Š	Describe covalent bonds and identify different types of covalently bonded				ı
) J	substances, such as small molecules, large molecules and substances with				ĺ
	giant covalent structures				l
, ,	Represent covalent bonds between small molecules, repeating units of				-
3	polymers and parts of giant covalent structures using diagrams				!
Cilellical Dollus, IOIIIC,	Draw dot and cross diagrams for the molecules of hydrogen, chlorine,				
5	oxygen, nitrogen, hydrogen chloride, water, ammonia and methane				l
	Deduce the molecular formula of a substance from a given model or diagram				
ב כ	in these forms showing the atoms and bonds in the molecule				l
	Describe the arrangement of atoms and electrons in metallic bonds and draw				_
7.2.1	diagrams the bonding in metals				!
<u>. </u>	Name the three States of matter, identify them from a simple model and				
20	state which changes of state happen at melting and boiling points				l
_ ′	Explain changes of state using particle theory and describe factors that affect				_
5 6					
ביים ביים ביים ביים	the merting and polling point of a substance				
משטמי אס	the melting and boiling point of a substance HT ONLY: Discuss the limitations of particle theory				
.z How bonding					

	Explain how the structure of ionic compounds affects their properties, including melting and boiling points and conduction of electricity (sodium				
	chloride structure only)				
	Explain how the structure of small molecules affects their properties				
	Explain how the structure of polymers affects their properties				
	Explain how the structure of giant covalent structures affects their properties				
	Explain how the structure of metals and alloys affects their properties,				
	including explaining why they are good conductors				
	Explain why alloys are harder than pure metals in terms of the layers of				
	atoms			\vdash	
	Explain the properties of graphite, diamond and graphene in terms of their				
	structure and bonding	ļ		\vdash	
	Describe the structure of fullerenes, and their uses, including				
40	Buckminsterfullerene and carbon nanotubes			Щ	
AQA	A TRILOGY Chemistry (8464) from 2016 Topics T5.3 Quantitative chemistry (Pap	er.	T)		
То	Student Checklist	R	Α	G	
pic					
	State that mass is conserved and explain why, including describing balanced				
is,	equations in terms of conservation of mass				
ent	Explain the use of the multipliers in equations in normal script before a				
em	formula and in subscript within a formula				
sur	Describe what the relative formula mass (Mr) of a compound is and calculate				
ea	the relative formula mass of a compound, given its formula				
u l	Calculate the relative formula masses of reactants and products to prove that				
ica	mass is conserved in a balanced chemical equation	Ш			
Chemical measurements,	Explain observed changes of mass during chemical reactions in non-enclosed				
	systems using the particle model when given the balanced symbol equation	Ш			
5.3.1	Explain why whenever a measurement is made there is always some				
5.	uncertainty about the result obtained				
	HT ONLY: State that chemical amounts are measured in moles (mol) and				
	explain what a mol is with reference to relative formula mass and				
u	Avogadro's constant			\vdash	
Э	HT ONLY: Use the relative formula mass of a substance to calculate the				
tan	number of moles in a given mass of the substance			\vdash	
sqr	HT ONLY: Calculate the masses of reactants and products when given a				
Use of amount of substance in	balanced symbol equation HT ONLY: Use moles to write a balanced equation when given the masses of	-			
	reactants and products (inc changing the subject of the equation)				
	HT ONLY: Explain the effect of limiting the quantity of a reactant on the		\vdash	\vdash	
	amount of products in terms of moles or masses in grams				
	HT ONLY: Calculate the mass of solute in a given volume of solution of			\vdash	
	known concentration in terms of mass per given volume of solution				
.2 U	HT ONLY: Explain how the mass of a solute and the volume of a solution is	 		\vdash	
5.3.2	related to the concentration of the solution				
	A TRILOGY Chemistry (8464) from 2016 Topics T5.4 Chemical changes (Paper 1)		Ш	닉	
7.0/	This continue y to to the month of the property of the miner changes (rapel 1)				

To pic	Student Checklist	R	Α	G	
	Describe how metals react with oxygen and state the compound they form,				
	define oxidation and reduction				
	Describe the arrangement of metals in the reactivity series, including carbon				
	and hydrogen, and use the reactivity series to predict the outcome of				
<u>8</u>	displacement reactions				
Reactivity of metals	Recall and describe the reactions, if any, of potassium, sodium, lithium,				
Ĕ	calcium, magnesium, zinc, iron and copper with water or dilute acids				
of,	Relate the reactivity of metals to its tendency to form positive ions and be				
ity	able to deduce an order of reactivity of metals based on experimental results				
cti	Recall what native metals are and explain how metals can be extracted from				
{ea	the compounds in which they are found in nature by reduction with carbon				
	Evaluate specific metal extraction processes when given appropriate				
5.4.1	information and identify which species are oxidised or reduced				
L	HT ONLY: Describe oxidation and reduction in terms of loss and gain of				
	electrons				
	HT ONLY: Write ionic equations for displacement reactions, and identify				
	which species are oxidised and reduced from a symbol or half equation				
	HT ONLY: Explain in terms of gain or loss of electrons that the reactions			1	
	between acids and some metals are redox reactions, and identify which				
	species are oxidised and which are reduced (Mg,Zn, Fe + HCl & H ₂ SO ₄)				
	Explain that acids can be neutralised by alkalis, bases and metal carbonates				
	and list the products of each of these reactions				
	Predict the salt produced in a neutralisation reaction based on the acid used				
	and the positive ions in the base, alkali or carbonate and use the formulae of				
	common ions to deduce the formulae of the salt				
	Describe how soluble salts can be made from acids and how pure, dry				
	samples of salts can be obtained				
	Required practical 8: preparation of a pure, dry sample of a soluble salt from			1	
	an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and				
	a water bath or electric heater to evaporate the solution				
	Recall what the pH scale measures and describe the scale used to identify				
	acidic, neutral or alkaline solutions				
	Define the terms acid and alkali in terms of production of hydrogen ions or				
	hydroxide ions (in solution), defiine the term base				
ds	Describe the use of universal indicator to measure the approximate pH of a				
aci	solution and use the pH scale to identify acidic or alkaline solutions				
Reactions of acids	HT ONLY: Use and explain the terms dilute and concentrated (in terms of				
	amount of substance) and weak and strong (in terms of the degree of				
	ionisation) in relation to acids				
}ea	HT ONLY: Explain how the concentration of an aqueous solution and the	+		+	
	strength of an acid affects the pH of the solution and how pH is related to				
5.4.2	the hydrogen ion concentration of a solution				
<u> </u>	Describe how ionic compounds can conduct electricity when dissolved in			\neg	
	water and describe these solutions as electrolytes				
	Describe the process of electrolysis	+		+	
-	· · · · · · · · · · · · · · · · · · ·				
1.3	Describe the electrolysis of molten ionic compounds and predict the products				
5.4	at each electrode of the electrolysis of binary ionic compounds				

	Explain how metals are extracted from molten compounds using electrolysis				
	and use the reactivity series to explain why some metals are extracted with				
	electrolysis instead of carbon				
	Describe the electrolysis of aqueous solutions and predict the products of the				
	electrolysis of aqueous solutions containing single ionic compounds				
	Required practical 9: investigate what happens when aqueous solutions are				
	electrolysed using inert electrodes				
	HT ONLY: Describe the reactions at the electrodes during electrolysis as				
	oxidation and reduction reactions and write balanced half equations for				
	these reactions				
AQA	A TRILOGY Chemistry (8464) from 2016 Topics T5.5 Energy changes (Paper 1)				
То	Student Checklist	R	Α	G	
pic	otadent enconior		,	Ĭ	
p.c	Describe how energy is transferred to or from the surroundings during a				
nic	chemical reaction				
ern	Explain exothermic and endothermic reactions on the basis of the				
th	temperature change of the surroundings and give examples of everyday uses				
ρρι				-	
le l	Required practical 10 : investigate the variables that affect temperature				
anc	changes in reacting solutions				
Exothermic and endothermic	Describe what the collision theory is and define the term activation energy				
erm	Interpret and draw reaction profiles of exothermic and endothermic				
the	reactions, inc identifying the relative energies of reactants and products,				
EXO	activation energy and overall energy change				
•	HT ONLY: Explain the energy changes in breaking and making bonds and				
5.5.	calculate the overall energy change using bond energies				
S 5.5.1	calculate the overall energy change using bond energies A TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chem	ica	 		
AQA	calculate the overall energy change using bond energies A TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chem ge (Paper 2)	ica	I		
AQA chan	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chem	ica		G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chem ge (Paper 2)			G	
AQA chan	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chemge (Paper 2) Student Checklist			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction,			G	
AQA chan To	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of cheming (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction, including the concentration, pressure, surface area, temperature and			G	
AQA chan To pic	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chemical (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction, including the concentration, pressure, surface area, temperature and presence of catalysts			G	
AQA chan To pic	TRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chemical (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction, including the concentration, pressure, surface area, temperature and presence of catalysts Required practical 11: investigate how changes in concentration affect the			G	
AQA chan To pic	ATRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chemical (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction, including the concentration, pressure, surface area, temperature and presence of catalysts Required practical 11: investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas			G	
AQA chan To pic	ATRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chemical (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction, including the concentration, pressure, surface area, temperature and presence of catalysts Required practical 11: investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas produced, change in colour or turbidity			G	
AQA chan To pic	ATRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chemical (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction, including the concentration, pressure, surface area, temperature and presence of catalysts Required practical 11: investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas produced, change in colour or turbidity Use collision theory to explain changes in the rate of reaction, including			G	
Rate of reaction d a b b a b b a c b a c b a c c c c c c c	ATRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chemical (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction, including the concentration, pressure, surface area, temperature and presence of catalysts Required practical 11: investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas produced, change in colour or turbidity Use collision theory to explain changes in the rate of reaction, including discussing activation energy			G	
AQA chan To pic	ATRILOGY Chemistry (8464) from 2016 Topics T5.6 The rate and extent of chemical (Paper 2) Student Checklist Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product formed, measured in g/s, cm³/s or mol/s Draw and interpret graphs showing the quantity of product formed or reactant used up against time and use the tangent to the graph as a measure of the rate of reaction HT ONLY: Calculate the gradient of a tangent to the curve on the graph of the quantity of product formed or reactant used against time and use this as a measure of the rate of reaction Describe how different factors affect the rate of a chemical reaction, including the concentration, pressure, surface area, temperature and presence of catalysts Required practical 11: investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas produced, change in colour or turbidity Use collision theory to explain changes in the rate of reaction, including			G	

	Draw and interpret reaction profiles for catalysed reactions				
	Explain what a reversible reaction is, including how the direction can be				
	changed and represent it using symbols: A + B ⇌ C + D				
pue	Explain that, for reversible reactions, if a reaction is endothermic in one				
ns s	direction, it is exothermic in the other direction				
tio	Describe the State of dynamic equilibrium of a reaction as the point when the				
eac	forward and reverse reactions occur at exactly the same rate				
e .	HT ONLY: Explain that the position of equilibrium depends on the				
ldis	conditions of the reaction and the equilibrium will change to counteract any				
Reversible reactions and	changes to conditions				
Re.	HT ONLY: Explain and predict the effect of a change in concentration of				
5.6.2	reactants or products, temperature, or pressure of gases on the equilibrium				
	position of a reaction				
AQA	A TRILOGY Chemistry (8464) from 2016 Topics T5.7 Organic chemistry (Paper 2)				
То	Student Checklist	R	Α	G	
pic					
	Describe what crude oil is and where it comes from, including the basic				
Sck	composition of crude oil and the general chemical formula for the alkanes				
Carbon compounds as fuels and feedstock	State the names of the first four members of the alkanes and recognise				
ee	substances as alkanes from their formulae				
β	Describe the process of fractional distillation, state the names and uses of				
sar	fuels that are produced from crude oil by fractional distillation				
nels	Describe trends in the properties of hydrocarbons, including boiling point,				
Is fi	viscosity and flammability and explain how their properties influence how				
S	they are used as fuels				
un n	Describe and write balanced chemical equations for the complete				
odu	combustion of hydrocarbon fuels				
ω	Describe the process of cracking and state that the products of cracking				
L C	include alkanes and alkenes and describe the test for alkenes				
rbc	Balance chemical equations as examples of cracking when given the formulae				
_	of the reactants and products				
5.7.1	Explain why cracking is useful and why modern life depends on the uses of				
	hydrocarbons				
AQA	A TRILOGY Chemistry (8464) from 2016 Topics T5.8 Chemical analysis (Paper 2)				
То	Student Checklist	R	Α	G	
pic					
	Define a pure substance and identify pure substances and mixtures from data				
- 5	about melting and boiling points				
an	Describe a formulation and identify formulations given appropriate				
Suc	information				
atic	Describe chromatography, including the terms stationary phase and mobile				
מן ל	phase and identify pure substances using paper chromatography				
orn	Explain what the Rf value of a compound represents, how the Rf value differs				
, f	in different solvents and interpret and determine Rf values from				
Purity, formulations and	chromatograms				
	Required practical 12: investigate how paper chromatography can be used to				
.8.1	separate and tell the difference between coloured substances (inc calculation of Rf values)				
		1			

	Explain how to test for the presence of hydrogen, oxygen, carbon dioxide and							
	chlorine							
-	AQA TRILOGY Chemistry (8465) from 2016 Topics T5.9 Chemistry of the atmosphere (Paper 2)							
То	Student Checklist	D	Λ	-				
pic	Student Checklist	R	Α	G				
-	Describe the composition of gases in the Earth's atmosphere using							
an	percentages, fractions or ratios							
ion	Describe how early intense volcanic activity may have helped form the early							
siti	atmosphere and how the oceans formed							
od.	Explain why the levels of carbon dioxide in the atmosphere changes as the							
03 ;	oceans were formed							
þe	State the approximate time in Earth's history when algae started producing							
 	oxygen and describe the effects of a gradually increasing oxygen level							
5.9.1 The composition and	Explain the ways that atmospheric carbon dioxide levels decreased							
	Name some greenhouse gases and describe how they cause an increase in							
pu	Earth's temperature							
Carbon dioxide and	List some human activities that produce greenhouse gases							
oxi.	Evaluate arguments for and against the idea that human activities cause a							
ibr	rise in temperature that results in global climate change							
bor	State some potential side effects of global climate change, including							
Car	discussing scale, risk and environmental implications							
	Define the term carbon footprint and list some actions that could reduce the				-			
5.9.2	carbon footprint							
	Describe the combustion of fuels as a major source of atmospheric pollutants							
	and name the different gases that are released when a fuel is burned							
: _ ا	Predict the products of combustion of a fuel given appropriate information							
nor	about the composition of the fuel and the conditions in which it is used							
Common	Describe the properties and effects of carbon monoxide, sulfur dioxide and							
	particulates in the atmosphere							
9.3	Describe and explain the problems caused by increased amounts of these							
5.	pollutants in the air							
AQ	A TRILOGY Chemistry (8464) from 2016 Topics T5.10 Using resources (Paper 2)							
То	Student Checklist	R	Α	G				
pic								
pu	State what humans use Earth's resources for, give some examples of natural							
e sa	resources that they use							
5.10.1 Using the Earth's resources and	Define the term finite and distinguish between finite and renewable							
	resources							
	Explain what sustainable development is and discuss the role chemistry plays							
	in sustainable development, including improving agricultural and industrial							
Ear	processes							
he	State examples of natural products that are supplemented or replaced by							
lg t	agricultural and synthetic products			_				
Jsir	Discuss the importance of water quality for human life, including defining							
1 L	potable water			_				
10.	Describe methods to produce potable water, including desalination of salty							
5.	water or sea water and the potential problems of desalination							

	Required practical 13: analysis and purification of water samples from	i	
	different sources, including pH, dissolved solids and distillation.		
	Describe waste water as a product of urban lifestyles and industrial processes		
	that includes organic matter, harmful microbes and harmful chemicals	i	
	Describe the process of sewage treatment and compare the ease of obtaining		
	potable water from waste water as opposed to ground or salt water	i	
	HT ONLY: Name and describe alternative biological methods for extracting		
	metals, including phytomining and bioleaching	r	
	HT ONLY: Evaluate alternative methods for extracting metals		
	Describe, carry out and interpret a simple comparative life cycle assessment		
	(LCA) of materials or products	i	
Life cycle	Discuss the advantages and disadvantages of LCAs		
e c	Carry out simple comparative LCAs for shopping bags made from plastic and		
	paper	r	
5.10.2	Discuss how to reduce the consumption of raw resources and explain how		
5.1	reusing and recycling reduces energy use (inc environmental impacts)	ı	