Personalised Learning Checklist

AQ	ΑΤΙ	RILOGY Physics (8464) from 2016 Topics T6.1. Energy			
Тор	ic	Student Checklist	R	Α	G
fore		Define a system as an object or group of objects and state examples of changes in the way energy is stored in a system			
tored be		Describe how all the energy changes involved in an energy transfer and calculate relative changes in energy when the heat, work done or flow of charge in a system changes			
gy is s		Use calculations to show on a common scale how energy in a system is redistributed			
's enel		Calculate the kinetic energy of an object by recalling and applying the equation: $[E_k = \frac{1}{2}mv^2]$			
ie way		Calculate the amount of elastic potential energy stored in a stretched spring by applying, but not recalling, the equation: $[E_e = \frac{1}{2}ke^2]$			
and th		Calculate the amount of gravitational potential energy gained by an object raised above ground level by recalling and applying, the equation: $[E_e = mgh]$			
/stem,		Calculate the amount of energy stored in or released from a system as its temperature changes by applying, but not recalling, the equation: $[\Delta E = mc\Delta \theta]$			ļ
in a sy	Š	Define the term 'specific heat capacity'			
nges	Jange	Required practical 14: investigation to determine the specific heat capacity of one or more materials.			1
y cha	uch cł	Define power as the rate at which energy is transferred or the rate at which work is done and the watt as an energy transfer of 1 joule per second			
Energ	tter s	Calculate power by recalling and applying the <i>equations:</i> [P = E/t & P = W/t]			
6.1.1	and ai	Explain, using examples, how two systems transferring the same amount of energy can differ in power output due to the time taken			
ition		State that energy can be transferred usefully, stored or dissipated, but cannot be created or destroyed and so the total energy in a system does not change			1
dissipa		Explain that only some of the energy in a system is usefully transferred, with the rest 'wasted', giving examples of how this wasted energy can be reduced			
n and o		Explain ways of reducing unwanted energy transfers and the relationship between thermal conductivity and energy transferred			
rvatio		Describe how the rate of cooling of a building is affected by the thickness and thermal conductivity of its walls			
Consei	ergy	Calculate efficiency by recalling and applying the equation: [efficiency = useful power output / total power input]			
6.1.2 (ot enŧ	HT ONLY: Suggest and explain ways to increase the efficiency of an intended energy transfer			_
-	nal	List the main renewable and non-renewable energy resources and define what a renewable energy resource is			
5.1.3	Natio	Compare ways that different energy resources are used, including uses in transport, electricity generation and heating			

	Explain why some energy resources are more reliable than others, explaining			
	patterns and trends in their use			<u> </u>
	Evaluate the use of different energy resources, taking into account any ethical			
	and environmental issues which may arise			L
	Justify the use of energy resources, with reference to both environmental			
	issues and the limitations imposed by political, social, ethical or economic			l
	considerations			
AQA T	RILOGY Physics (8464) from 2016 Topics T6.2. Electricity (Paper 1)			
Торіс	Student Checklist	R	Α	G
	Draw and interpret circuit diagrams, including all common circuit symbols			
	Define electric current as the rate of flow of electrical charge around a closed circuit			
JCe	Calculate charge and current by recalling and applying the formula: [Q = It]			
tar	Explain that current is caused by a source of potential difference and it has the			
sis	same value at any point in a single closed loop of a circuit			
e d	Describe and apply the idea that the greater the resistance of a component, the			
ano	smaller the current for a given potential difference (p.d.) across the component			
e	Calculate current, potential difference or resistance by recalling and applying			
ren	the equation: [V = IR]			
iffe	Required practical 15: Use circuit diagrams to set up and check circuits to			
l di	investigate the factors affecting the resistance of electrical circuits			
ntia	Define an ohmic conductor			
ote	Explain the resistance of components such as lamps, diodes, thermistors and			
t, p	LDRs and sketch/interpret IV graphs of their characteristic electrical behaviour			
ren	Explain how to measure the resistance of a component by drawing an			
In	appropriate circuit diagram using correct circuit symbols			
.10	Required practical 16: use circuit diagrams to construct appropriate circuits to			
5.2	investigate the I–V characteristics of a variety of circuit elements			
	Show by calculation and explanation that components in series have the same			
	current passing through them			
lel	Show by calculation and explanation that components connected in parallel			
ıral	have the same the potential difference across each of them			
ba	Calculate the total resistance of two components in series as the sum of the			
anc	resistance of each component using the equation: $[R_{total} = R_1 + R_2]$			
es	Explain qualitatively why adding resistors in series increases the total resistance			
eri s	whilst adding resistors in parallel decreases the total resistance			
.2 S uit	Solve problems for circuits which include resistors in series using the concept of			
5.2 circ	equivalent resistance			
	Explain the difference between direct and alternating voltage and current,			
	stating what UK mains is			
pu	Identify and describe the function of each wire in a three-core cable connected			
e sa	to the mains			
nse	State that the potential difference between the live wire and earth (0 V) is			
tic	about 230 V and that both neutral wires and our bodies are at, or close to, earth			l
les	potential (0 V)			
no	Explain that a live wire may be dangerous even when a switch in the mains			
it a	circuit is open by explaining the danger of providing any connection between			
5.2. iafe	the live wire and earth			l
		1 ¹		i i

-				
	Explain how the power transfer in any circuit device is related to the potential			
	difference across it and the current through it			
	Calculate power by recalling and applying the equations: $[P = VI]$ and $[P = I^2 R]$			
]			
	Describe how appliances transfer energy to the kinetic energy of motors or the			
	thermal energy of heating devices			
	Calculate and explain the amount of energy transferred by electrical work by			
	recalling and applying the equations: $\int E = Pt J$ and $\int E = QV J$			
	Explain how the power of a circuit device is related to the potential difference			
	across it, the current through it and the energy transferred over a given time.			
ers	Describe with examples, the relationship between the power ratings for			
nsf	domestic electrical appliances and the changes in stored energy when they are			
tra	in use			
λg	Identify the National Grid as a system of cables and transformers linking power			-
Jer	stations to consumers			
ш т	Stations to consumers			
5.4	explain why the National Ghu system is an efficient way to transfer energy,			
<u>0</u>	with reference to change in potential difference reducing current			
	RILOGY Physics (8464) from 2016 Topics 16.3. Particle model of matter (Paper 1)			
ΤΟΡΙ	Student Checklist	R	Δ	G
c				
<u>e</u>	Calculate the density of a material by recalling and applying the equation: <i>I o</i> =			
tic	m/V1			
par	Recognise/draw simple diagrams to model the difference between solids			
he	liquids and gases			
dt	Use the particle model to explain the properties of different states of matter			
an	and differences in the density of materials			
ate	Required practical 17: use appropriate apparatus to make and record the			
f st	measurements needed to determine the densities of regular and irregular solid			
s of	objects and liquids			
ge	Becall and describe the names of the processes by which substances change			
har	state			
e C	Use the particle model to explain why a change of state is reversible and affects			-
3.3	the properties of a substance, but not its mass			
9 2	State that the internal energy of a system is stored in the atoms and molecules			
erg	that make up the system			
ene	Evaluate that internal energy is the total kinetic energy and notontial energy of			
pu	all the particles in a system			
Уа	Calculate the change in thermal energy by applying but not recalling the			
ere 8	Calculate the change in thermal energy by applying but not recalling the			
ene	equation $\Delta E = m c \Delta \theta$			-
la	Calculate the specific latent heat of fusion/vaporisation by applying, but not			
s	recalling, the equation: [E = mL]			
Int fer	Interpret and draw heating and cooling graphs that include changes of state			
3.2 ans	Distinguish between specific heat capacity and specific latent hea			
6.: tr:				
e U	Explain why the molecules of a gas are in constant random motion and that the			
Ind	nigher the temperature of a gas, the greater the particles' average kinetic			
Pa el a	energy			
с П С П	Explain, with reference to the particle model, the effect of changing the			
mÖ				

	Calculate the change in the pressure of a gas or the volume of a gas (a fixed			
	mass held at constant temperature) when either the pressure or volume is			
	increased or decreased			
AQA T	RILOGY Physics (8464) from 2016 Topics T6.4. Atomic structure (Paper 1)			
				-
ТОРГ	Student Checklist	к	Α	G
L	Describe the basic structure of an atom and how the distance of the charged			
	particles vary with the absorption or emission of electromagnetic radiation			
	Define electrons, neutrons, protons, isotones and ions			
pu	Define electrons, neutrons, protons, isotopes and ions			
sa	Relate differences between isotopes to differences in conventional			
Б	representations of their identities, charges and masses			
At	Describe how the atomic model has changed over time due to new			
4.1 top	experimental evidence, inc discovery of the atom and scattering experiments			
T6. iso	(inc the work of James Chadwick)			
	Describe and apply the idea that the activity of a radioactive source is the rate			
	at which its unstable nuclei decay, measured in Becquerel (Bq) by a Geiger-			
	Muller tube			
	Describe the penetration through materials, the range in air and the ionising			
	power for alpha particles, beta particles and gamma rays			
	Apply knowledge of the uses of radiation to evaluate the best sources of			
	radiation to use in a given situation			
	Use the names and symbols of common nuclei and particles to complete			
Ę	balanced nuclear equations, by balancing the atomic numbers and mass			
atio	numbers			
adia	Define half-life of a radioactive isotope			
ar re	HT ONLY: Determine the half-life of a radioactive isotope from given			
clea	information and calculate the net decline, expressed as a ratio, in a			
nu	radioactive emission after a given number of half-lives			
pu	Compare the hazards associated with contamination and irradiation and outline			
ls a	suitable precautions taken to protect against any hazard the radioactive sources			
μo	may present			
2 At	Discuss the importance of publishing the findings of studies into the effects of			
4.2	radiation on humans and sharing findings with other scientists so that they can			
т6	be checked by peer review			
AQA T	RILOGY Physics (8464) from 2016 Topics T6.5. Forces (Paper 2)			
Торіс	Student Checklist	R	Α	G
	Identify and describe scalar quantities and vector quantities			
	Identify and give examples of forces as contact or non-contact forces	$\left - \right $		
heir	Describe the interaction between two objects and the force produced on each			
여 다.	as a vector			
an	Describe weight and explain that its magnitude at a point depends on the			
ces	Calculate weight by recalling and using the equation: [14] - mg 1			
or. ctio	calculate weight by recalling and using the equation: [W = mg]			
.1 F erad	Represent the weight of an object as acting at a single point which is referred to			
l ro ž	as the object's 'centre of mass'			

	Calculate the resultant of two forces that act in a straight line		
	HT ONLY: describe examples of the forces acting on an isolated object or		
	system		
	HT ONLY: Use free body diagrams to qualitatively describe examples where		
	several forces act on an object and explain how that leads to a single resultant		
	force or no force		L
	HT ONLY: Use free body diagrams and accurate vector diagrams to scale, to		
	resolve multiple forces and show magnitude and direction of the resultant		
	HT ONLY: Use vector diagrams to illustrate resolution of forces, equilibrium		
	situations and determine the resultant of two forces, to include both		
8	magnitude and direction	\vdash	
an	Describe energy transfers involved when work is done and calculate the work done by recalling and using the equation $(M - C_{2})$		
er er	done by recalling and using the equation: $[W = FS]$		
c do Isfe	Describe what a joule is and state what the joule is derived from		
ork trar	Convert between newton-metres and joules.		
N NB	Evalain why work done against the frictional forces acting on an object causes a	\vdash	
.5.2 ner	rise in the temperature of the object		
e Q	Describe examples of the forces involved in stretching bending or compressing	\vdash	
	an ohiert		
	Explain why, to change the shape of an object (by stretching, bending or		
	compressing), more than one force has to be applied – this is limited to		
	stationary objects only		
	Describe the difference between elastic deformation and inelastic deformation		
~	caused by stretching forces		
ticit	Describe the extension of an elastic object below the limit of proportionality		
last	and calculate it by recalling and applying the equation: [F = ke]		
de	Explain why a change in the shape of an object only happens when more than		
an	one force is applied		
ces	Describe and interpret data from an investigation to explain possible causes of		
For	a linear and non-linear relationship between force and extension		
6.3	Calculate work done in stretching (or compressing) a spring (up to the limit of		
6.5	proportionality) by applying, but not recalling, the equation: $[E_e = \frac{1}{2}ke^2]$		
	Required practical 18 : investigate the relationship between force and extension		
	for a spring		
	Define distance and displacement and explain why they are scalar or vector		
	quantities	\vdash	
	Express a displacement in terms of both the magnitude and direction		
	Explain that the speed at which a person can walk, run or cycle depends on a		
	number of factors and recall some typical speeds for walking, running, cycling		
ion	Make measurements of distance and time and then calculate speeds of objects		
not	in calculating average speed for non-uniform motion		
- pi	Explain why the speed of wind and of sound through air varies and calculate		
san	speed by recalling and applying the equation: [s = v t]	\square	
ces	Explain the vector-scalar distinction as it applies to displacement, distance,		
For	velocity and speed	Щ	
5.4	HT ONLY: Explain qualitatively, with examples, that motion in a circle involves		
0.1	constant speed but changing velocity		1

6.5. Moi	mv]			
υE	HT ONLY: Calculate momentum by recalling and applying the equation: $p = 1$			
	HT ONLY: Estimate the forces involved in the deceleration of road vehicles			
	deceleration and explain how this might be dangerous for drivers			
	Explain and apply the idea that a greater braking force causes a larger			
	vehicle's kinetic energy and increases the temperature of the brakes			
	Explain how a braking force applied to the wheel does work to reduce the			
	factors, including implications for road safety			
	Explain how the braking distance of a vehicle can be affected by different			
	and evaluate measurements of the reaction times of students			
	Explain methods used to measure human reaction times and take interpret	\vdash		
	state typical reaction times and describe now reaction time (and therefore stopping distance) can be affected by different factors			
	State typical reaction times and describe how reaction time (and therefore			
	Evaluate the effect of various factors on thinking distance based on given data			
	different reaction times of students			
	Interpret and evaluate measurements from simple methods to measure the			
	Explain methods used to measure human reaction times and recall typical results			
	Describe factors that can effect a drivers reations time			
	Apply Newton's Third Law to examples of equilibrium situations			
	an object on the acceleration			
	acceleration of an object of constant mass, and the effect of varying the mass of			
	Required practical 19: investigate the effect of varying the force on the			
	everyday road transport			
	Estimate the speed, accelerations and forces of large vehicles involved in			
	HT ONLY: Describe what inertia is and give a definition			
	Recall and apply the equation: [F = ma]			
	Define and apply Newton's second law relating to the acceleration of an object			
	Newton's First Law			
	that forces must be in effect if its velocity is changing, by stating and applying			
	Explain the motion of an object moving with a uniform velocity and identify			
	Apply, but not recall, the equation: $\int v^2 - u^2 = 2as l$			
	AT ONLY: Measure, when appropriate, the area under a velocity- time graph			
	distance travelled (or displacement)			
	HT ONLY: Interpret enclosed areas in velocity–time graphs to determine			
	gradient and distance travelled from the area underneath			
	Represent motion using velocity-time graphs, finding the acceleration from its			
	equation: [$a = \Delta v/t$]			
	Calculate the average acceleration of an object by recalling and applying the			
	estimate the magnitude of everyday accelerations			
	Describe an object which is slowing down as having a negative acceleration and			
	and slopes of distance-time graphs			
	describing its motion and calculating its speed from the graph's gradient			
	Represent an object moving along a straight line using a distance-time graph,			
		1	1	

	HT ONLY: Explain and apply the idea that, in a closed system, the total			
	momentum before an event is equal to the total momentum after the event			
	HT ONLY: Describe examples of momentum in a collision			
ΔΟΔ Τ	RILOGY Physics (8464) from 2016 Tonics T6.6. Wayes (Paner 2)			
Topic	Student Checklist	R	Α	G
	Describe waves as either transverse or longitudinal, defining these waves in			
	terms of the direction of their oscillation and energy transfer and giving			
	examples of each			
	Define waves as transfers of energy from one place to another, carrying			
	information			
	Define amplitude, wavelength, frequency, period and wave speed and Identify			
	them where appropriate on diagrams			
	State examples of methods of measuring wave speeds in different media and			
lids	Identify the suitability of apparatus of measuring frequency and wavelength			
so	Calculate wave speed, frequency or wavelength by applying, but not recalling,			
and	the equation: $[v = f\lambda]$ and calculate wave period by recalling and applying the			
ds	equation: [<i>T</i> = 1/ <i>f</i>]			
flui	Identify amplitude and wavelength from given diagrams			
n air,	Describe a method to measure the speed of sound waves in air			
es ir	Describe a method to measure the speed of ripples on a water surface			
Vav	Required practical 20: make observations to identify the suitability of			<u> </u>
1	apparatus to measure the frequency, wavelength and speed of waves in a ripple			
9.9	tank and waves in a solid			
	Describe what electromagnetic waves are and explain how they are grouped			
	List the groups of electromagnetic waves in order of wavelength			
	Explain that because our eyes only detect a limited range of electromagnetic			
	waves, they can only detect visible light			
	HT ONLY: Explain how different wavelengths of electromagnetic radiation are			
	reflected, refracted, absorbed or transmitted differently by different			
	substances and types of surface			
	Illustrate the refraction of a wave at the boundary between two different			
	media by constructing ray diagrams	<u> </u>		
	HT ONLY: Describe what refraction is due to and illustrate this using wave front diagrams			
	Required practical activity 21: investigate how the amount of infrared radiation			
	absorbed or radiated by a surface depends on the nature of that surface			
S	HT ONLY: Explain how radio waves can be produced by oscillations in	$ \vdash $		
ave	electrical circuits. or absorbed by electrical circuits			
Ň	Explain that changes in atoms and the nuclei of atoms can result in			
etic	electromagnetic waves being generated or absorbed over a wide frequency			
lgn	range			
ma	State examples of the dangers of each group of electromagnetic radiation and	Γ		
ctrc	discuss the effects of radiation as depending on the type of radiation and the			
Ele	size of the dose			
5.2	State examples of the uses of each group of electromagnetic radiation,			
6.6	explaining why each type of electromagnetic wave is suitable for its applications			

AQA TRILOGY Physics (8464) from 2016 Topics T6.7. Magnetism and electromagnetism (Paper					
Z) TOPI C	Student Checklist	R	A	G	
and sm,	Describe the attraction and repulsion between unlike and like poles of permanent magnets and explain the difference between permanent and induced magnets				
anent agneti:	Draw the magnetic field pattern of a bar magnet, showing how field strength and direction are indicated and change from one point to another				
Perm ced m	Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic				
6.7.1 indu	Describe how to plot the magnetic field pattern of a magnet using a compass				
	State examples of how the magnetic effect of a current can be demonstrated and explain how a solenoid arrangement can increase the magnetic effect of the current				
effect	Draw the magnetic field pattern for a straight wire carrying a current and for a solenoid (showing the direction of the field)				
notor (HT ONLY: State and use Fleming's left-hand rule and explain what the size of the induced force depends on				
The n	HT ONLY: Calculate the force on a conductor carrying a current at right angles to a magnetic field by applying, but not recalling, the equation: [<i>F</i> = <i>BIL</i>]				
6.7.2	HT ONLY: Explain how rotation is caused in an electric motor				
				i	