Plotting Quadratic Graphs:				Solving Linear Equations:	Negative and	Compound Inte	
$v = x^2 - 2x - 4$				Linear Equations can have	Fractional Indices	£2000 is paid into	
When $x = -2$, $y = (-2)^2 - (2 \times -2) - 4 = 4$				fractional and negative	$x^{-n} = \frac{1}{n}$	compound intere the account after	
x -2 -1 0 1 2 3 4				solutions!	$1 \qquad x^n$		
y 4 –	-1 -4	-5 -	4 -1 4	18 - 7x = 3(2x - 8)	$x\overline{n} = \sqrt[n]{x}$	£2000>	
Coordinates are (-2, 4), (0,-4) etc.				Expand the brackets	1 1	Reverse Percent	
Plot these coordinates on a coordinate grid and plot a				18 - 7x = 6x - 24	$6^{-3} = \frac{1}{63} = \frac{1}{216}$	A Football shirt	
				Add $7x$ from both sides as it	$(4)^{-2}$ $(7)^{2}$ 49	£51.66. The origir	
Upper and Lower			Lower Bounds:	is the smallest	$\left(\frac{1}{7}\right) = \left(\frac{7}{4}\right) = \frac{15}{16}$	5	
5		15 (Ne	earest Integer)	(+7x) $(+7x)$	$121\frac{1}{2} - \sqrt{121} - 11$	A House increas	
		Lower Bound = 14.5 Upper Bound = 15.5		18 = 13x - 24 (+24) (+24) (+24) (+24)	$121^2 - \sqrt{121} - 11$	£162,400. The o	
					$64\overline{3} = \sqrt[3]{64} = 4$	1624	
0		14.5	$\leq 15 < 15.5$	42 - 13x ($\div 13$) ($\div 13$)	De the second of The second	<u> </u>	
-3 -2 1 0 1 2 3 4	5			$\begin{array}{c} (13) \\ \text{Solution} \ x = \frac{42}{3} \end{array}$	Pythagoras Theorem:	1	
-2-		2	20.9 (3sf)	Solution: $x = \frac{1}{13}$	hypotenu	se	
		LB = 20.85 and UB = 20.95 $20.85 \le 20.9 < 20.95$		$\frac{3x+8}{2} = 1$			
Averages from Gr	rouped Fi	requency Tab	oles:	3x + 8 = 2	$c^2 = a$	$c^{-} = a^{-} + b^{-}$	
Height,	Frea	Midpoint.	$m \times Freg.$	(-8) (-8)	x cm	1	
h (cm)	- 1	m		3x = -6	12 cm	_	
$0 < h \le 10$	15	5	$5 \times 15 = 75$	(÷3) (÷3)	16		
$10 < h \leq 20$	37	15	$15 \times 37 = 555$	Solution: $x = -2$	16 CM	1	
$20 < h \le 30$	26	25	$25 \times 26 = 650$	5 3 3 4 9	$a^2 + b^2 =$	<i>c</i> ²	
$30 < h \le 40$	22	35	$35 \times 22 = 770$	$\frac{5x-3}{1} = \frac{2x+9}{1}$	$12^2 + 16^2 =$	$= x^2$	
Iotal	100		2050	4 3 Multiply both sides by 12 as it	144 + 256 =	$= x^2$	
Estimate for the	e Mean =	$=\frac{2050}{2050}=20.$	5cm	is the LCM of 4 and 3	$x^2 = 400$		
100 Using midpoints gives us an estimate as exact values			as exact values	12(5x-3) $12(2x+9)$	(\mathbf{v}) (\mathbf{v})		
are unkown					x = 20cm		
				12÷4=3 and 12÷3=4		9	
Modal Class = $10 < h \le 20$ (The category with the				3(5x-3) = 4(2x+9)	17cm	17cm y cm	
biggest frequer	ency!)			Expand the brackets	26 cm		
				15x - 9 = 8x + 36	$a^2 + b^2 = c^2$		
Class in which the Median lies: The median is the				(-8x) $(-8x)7x - 9 - 36$	$y^2 + 17^2 = 26^2$		
$\left(\frac{n+1}{2}\right)^{th}$ Value. There are 20 people, so the median is				(+9) $(+9)$	$y^2 + 289 = 676$		
$\begin{pmatrix} 2 \end{pmatrix}$ $(100+1)$ th							
the $\left(\frac{100+1}{2}\right)^{th} = 55.5^{th}$ Value. The median is				(÷7) (÷7)	$y^2 = 387$		
therefore in the	e 20 < h	≤ 30 catego	ory!	Solution: $x = \frac{45}{2}$	(√)	(√)	
Multiplying and Dividing in Standard Form				Remember to simplify your	$y = \sqrt{387} \ cm \ or \ y = 19.7 \ cm(3sf)$		
<u>INUITIPLYING and Dividing in Standard Form:</u> $(4.2 \times 10^3) \times (2 \times 10^4) = (4.2 \times 2) \times (10^3 \times 10^4)$				fractions if you can!			
(4.2 × 10) × (5	= 12.6 >	- (4.2 × 3) / × 10 ⁷	(10 × 10)		Compound Measures:	Distance	
But our answer is not in Standard Form. We need to write				Expand and Simplify:	Speed (m/s, km/h, mph) = $\frac{Distance}{Time}$		
it as: 1.26×10^8				(3x - 7)(5x - 2)	Pressure (N/m) = $\frac{Force}{4\pi cc}$		
it as: $1.26 \times 10^{\circ}$ $(7.5 \times 10^{\circ}) \div (2.5 \times 10^{\circ}) = (7.5 \div 2.5) \times (10^{\circ} \div 10^{\circ})$ $= 3 \times 10^{3}$			$(10^9 \div 10^6) \times (10^9 \div 10^6)$	(3x - 7)(3x - 2) = $15r^2 - 6r - 35r + 14$	Density (kg/m ³ , g/cm ³) = $\frac{Mass}{Volume}$		
				$= 15x^{2} - 41x + 14$			
AND/OR Rules					Solving Quadratics by f	actoricing:	
Independent: 2 eve	ents that	do not affec	t each outcome	$(2x+9)^2 = (2x+9)(2x+9)$	$x^2 - x - 42 = 0$		
Mutually Exclusive: 2 events that cannot happen at the same			t happen at the same	$= 4x^2 + 18x + 18x + 81$	We require 2 numbers that add to		
time				$=4x^2+36x+81$	make the coefficient of $x(-1)$ and		
For Independent Events: $P(A \text{ and } B) = P(A) \times P(B)$ For Mutually Exclusive Events: $P(A \text{ or } B) = P(A) + P(B)$					multiply to make the constant term (-42) . The two numbers are -7		
				(5x + 7)(5x - 7) = 25 u^2 25 + 25 + 40			
Simple Interest:				$= 25x^{-} - 35x + 35x - 49$ $= 25x^{2} - 49$	and 6. We then factorise the		
£2000 is paid into an account that pays 5% simple interest				This is an example of DOTS	quadratic: (x-7)(x-6) = 0		
per annum (pa). The amount in the account after 3 years				(Difference of Two Squares)			
is: £2000 + (2000	0×0.05	$(\times 3) = £23 $	00	Tamerence of two oquares)	Either: $x - 7 = 0$ or $x + 6 = 0$		
Voor Q Highor					(+7) (+7)	(-6) (-6)	
rear 9 righer					Solutions: $x = 7 c$	rx = -6	

SolvingSimulatenous Equations using Elimination 4x + 7y = 15(1)(2) 5x - 2y = 8Make the coefficient of *x* or *y* the same to eliminate one of the vaiables $(1) \times 2 \Rightarrow 8x + 14y = 30$ $(2) \times 7 \Rightarrow 35x - 14y = 56$ Add the two equations together as the signs of *y* are **<u>different</u>** 43x = 86(÷ 43) (÷43) *x* = 2 To find our y value, we need to substitute x=2 into either equation. Using equation 1: $(4 \times 2) + 7y = 15$ 8 + 7y = 15(-8) (-8) 7y = 7 $(\div 7)$ $(\div 7)$ y = 1Solution: x = 2, y = 13x + 5y = 14(1) 7x + 2y = 23(2)Make the coefficient of *x* or *y* the same to eliminate one of the vaiables $(1) \times 7 \Rightarrow 21x + 35y = 98$ $(2) \times 3 \Rightarrow 21x + 6y = 69$ **Subtract** the two equations together as the signs of *x* are **the** same 29y = 29(÷29) (÷29) y = 1To find our x value, we need to substitute y = 1 into either equation. Using equation 2: $7x + (2 \times 1) = 23$ 7x + 2 = 23(-2) (-2) 7x = 21(÷7) (÷7) x = 3Solution: x = 3, y = 1

 $= 0.7 \times 0.8 = 0.56$