

Unit 2 Brain & Neuropsychology Knowledge Organiser

Key terms		Structure & func	
Key Term	Definition	Structure of the NS	ANS
ANS	Autonomic nervous system – it is 'automatic' as the system operates involuntarily. It has 2 main divisions: the	The nervous system has 2 jobs:	ANS control h
CN/C	sympathetic and the parasympathetic nervous system.	1. Collect and respond to information in environment	temperature a
CNS	Is made up of the brain and spinal cord. Where all complex commands and decisions are made.	2. Control working of different organs and cells in body,	No conscious o
Nervous system PNS	Consists of the central nervous system and the peripheral nervous system.	inc. brain.	Sympathetic I
PINS	Peripheral nervous system transmits info about voluntary activity, communicating between the CNS and the rest of the body. Coordinates some reflex responses.	Subdivisions:	leads to fight o
SNS	Somatic nervous system – transmits info from sense organs to the CNS. Receives info from the CNS that directs		Parasympathe
5145	muscles to act.		Falasympatile
Fight or flight response	Is the immediate physiological response of an animal when confronted with a threatening or stressful situation.	The nervous	
0	The sympathetic division of the ANS causes the release of adrenaline. This makes the body physiologically	The peripheral system The central nervous system	Flight or fight
	aroused and prepares the body to be able to fight the threat or run from it.	(PNS) (CNS)	Brain detects
The James-Lange theory	Is a theory of emotion which suggests that our experiences of physiological changes comes first, which the brain		Sympathetic N
	then interprets as an emotion.	The somatic The autonomic	Release of
Emotion	A strong feeling or mood that has important motivational properties, it drives an individual to behave in a	nervous system nervous system The brain The spinal cord (SNS) (ANS)	sympathetic.
	particular way.		Fight or flight
Excitatory	Some neurotransmitters such as adrenaline (also a hormone) generally increase the positive charge of the next		adrenaline rele
	neuron, making it more likely to fire.	Sympathetic Parasympathetic	
Inhibitory	Some neurotransmitters, such as serotonin, generally increase the negative charge of the next neuron, making it	division division	or run (flight.
Naura	less likely to fire.		Once threat h
Neurons	Are cells that communicate messages through electrical and chemical signals throughout the nervous system. 3		
Nourotransmittor	different types: sensory, relay and motor. Is a chemical that is released from the synaptic vesicles. These send signals across the synaptic cleft from one	Functions of the NS	James-Lange 1
Neurotransmitter	neuron to another. Neurotransmitters can cause excitation or inhibition of the net neuron in the chain.	CNS – brain & spinal cord. Brain divided into 2 hemispheres;	Physiological a
Synaptic transmission	Is the process by which neighbouring neurons communicate with each other. Neurons send chemical messages	left & right. Right controls left. Left controls right. Centre of	Hypothalamus
	across the gap (the synaptic cleft) and separates them.	conscious awareness, decision making takes place here. Brain	physiological a
Hebb's theory of learning	An early theory of 'plasticity' in the brain which suggests that learning causes synaptic connections between	stem at the base of the brain: controls many basic functions e.g.	Emotion after
& neuronal growth	groups of neurons to become stronger. The groups of neurons are called cell assemblies, and the neuronal	sleep & reflexes. Brain stem connects brain to spinal cord.	
Ū.	growth that occurs between these will create more efficient learning in the brain.		Brain interpret
Cerebellum	The 'little brain' at the base of the brain above the spinal cord that coordinates movement with sensory input	Spinal cord carries messages between brain and rest of body.	E.G.
	(sensorimotor) and also has a role in cognition.	PNS – means on the 'outside'. PNS supports actions of CNS.	Meet bear in f
Cerebral cortex	The very thin layer of brain tissue that gives the brain its pinky-grey appearance. Highly folded and complex in	Done through millions of nerve cells called neurons. PNS	Interpret as fe
	humans, which is what separates our brain from that of animals. It is the main centre of the brains conscious	divided into ANS & SNS.	No physical ch
	awareness.	ANS – is automatic as it acts involuntary. Coordinates vital	Speaking in fro
Localisation	Refers to the theory that different brain areas are responsible for specific functions and behaviours.	functions such as breathing, heart rate and digestion. Involved	any sense of fe
Interpretive cortex	Is an area of the temporal lobe of the brain where interpretations of memories are stored, i.e. the emotional	in body's response to stress. Has 2 parts: SYMPATHETIC &	
Cognitivo nouroccioneo	component of the memory. How mental processes (such as perception, learning and memory) and brain activity/biological structures of the	PARASYMPATHETIC.	Evoluation
Cognitive neuroscience			Evaluation:
Neurological damage	brain are connected/influence one another. Any event, such as illness or injury which can result in neuron damage in the brain may lead to a loss of function	· · ·	
incurviogical dallage	or change in behaviour.	exception are reflexes that are not under voluntary control.	2. Challe
CT scan	A computerised tomography scan uses X-rays and a computer to create detailed images of the inside of the	Takes in info from sensory organs.	the sa
	body, including the brain. The result is cross-sectional photographs.		3. Extra:
Fmri	A functional magnetic resonance imaging scan uses radio waves to measure blood oxygen levels in the brain.	1	factor
	Those areas of the brain that are most active will use most oxygen and 3D images of this activity are shown on a		Singer
	computer screen		
PET Scan	Positron emission tomography scan is a scan that allows live brain activity to be observed. An injection of the		
	radioactive substance is given to the patient. Those areas of the brain that absorb most glucose are usually		
	represented in red on a computer screen.		
Episodic memory	Describes memory for personal events. Includes memories of when the events occurred and of the people,		
	feelings and sequence of what happened.	4	
Semantic memory	Store for our knowledge of the world. Includes facts and our knowledge of what words and concepts		
	mean.	ļ	

ervous system

homeostasis: maintains a balanced internal state e.g. body e at 37'.

s control because functions are vital to life e.g. heartbeat.

NS – physiological arousal, triggered when stressed and t or flight.

hetic NS – opposite to sympathetic; rest and digest.

nt

ts threat – hypothalamus identifies a threat (stressor).
 NS kicks in – fight or flight.

adrenaline: ANS changes from parasympathetic to ... Adrenaline released into bloodstream.

ht – Immediate & automatic. Physiological changes due to elease, e.g increase in HR. Body gets ready to confront (fight)
 t.

has passed – parasympathetic kicks in.

e Theory of Emotion

al arousal first

us arouses sympathetic NS. Adrenaline released leading to I arousal (fight or flight).

erwards

rets physiological arousal. Causes emotion. E.g. fear.

n forest. Sympathetic arousal: muscles tense, HR increases. fear.

changes = no emotion

front of class, no increase in HR means you don't experience ^ffear.

tions do come after arousal; e.g. with phobias.

llenged by Cannon-Bard theory – Some emotions occur at same time as physiological arousal.

a: James-Lange theory may be too simple. Challenged by 2 or theory, we need social cues to label emotion (Schachter & er).

	Neuron structure & function	Structure & function in the brain		
Neuron and electrical transmission	Hebb's theory	Structure & function of the brain	Penfield's study of the interpretive cortex	
Types of neuron:	The brain is plastic	2 hemispheres, 4 lobes:	AIM	
1. SENSORY – From PNS to CNS. Long	Synaptic connections become stronger the more they are used. Brain can change and	Top layer of brain is the cerebral cortex, divided into 4	To investigate the function of the temporal lobe using	
dendrite, short axon.	develop.	lobes:	the Montreal procedure.	
2. RELAY – connect sensory to motor. Short	The brain adapts	1. Frontal lobe: contains motor area at the front	METHOD	
dendrite, short axon.	Brain changes in response to new experiences, at any age.	of the brain. Controls thinking, planning and	Operated on patients with severe epilepsy. Could	
3. MOTOR – From CNS to muscles/glands.	Learning produces an engram	motor area controls movement.	stimulate areas of the brain in a conscious patient who	
Short dendrite, long axon.	Learning leaves a trace called an engram. This can be permanent if we rehearse	2. Parietal lobe: contains somatosensory area.	reported the experience.	
Structure of neurons	learning.	Behind frontal lobe. Is where sensations are	RESULTS	
Cell body: Nucleus containing DNA.	Cell assemblies and neuronal growth	processed.	Temporal lobe stimulation; experiences and feelings	
Axon – Carries signals, covered in myelin sheath	Groups of neurons that fire together. Neuronal growth occurs as cell assemblies rewire.	3. Occipital lobe: contains visual area. At back of	(hallucinations)associated with those experiences	
which helps and protects.		brain, controls vision.	including déjà vu.	
Myelin sheath – fatty covering of axon with gaps		4. Temporal lobe: contains auditory/language	CONCLUSION	
(nodes of Ranvier), insulation and speeds signal.	1. Hebb's theory is scientific	area. Behind frontal lobe and below parietal	Area of brain called interpretive cortex stores the	
Terminal buttons – end of axon, part of synapse.	Objective basis gives theory validity and credibility.	lobe. Auditory (sound) area, related to speech	personal meaning of previous events.	
Electrical transmission: how neurons fire.	2. Real-world application	and learning.		
Resting state: negative charge.	Stimulating school environment can increase neuronal growth.	Cerebellum: receives information from spinal cord and	EVALUATION	
When firing, the charge inside the cell changes	3. Extra – reductionist theory.	the brain. Coordinates movement and balance;	1. Precise method: he could stimulate the exact	
which increase its action potential.	Reduces learning to neuronal level. Ignores higher levels, e.g. Piaget's idea that	attention and language too.	same area of the brain and have verbal reports	
	accommodation is a key part of learning.		from awake patients.	
Synapses and chemical transmission		Localisation of function in the brain	2. Unusual sample: All p'ts had severe epilepsy so	
The synapse	Dendrite Terminal button	Specific brain areas do specific jobs.	their behaviour may not reflect people with	
Where neurons communicate with each other;		Motor area: Damage to the left hemisphere affects the	'normal' brains.	
terminal button at presynaptic neuron + synaptic	Soma Axon	right side of the body and vice versa.	3. Extra – mixed results in later research: the	
cleft + receptor sites on postsynaptic neuron.	Soma	Somatosensory area: most sensitive body parts take up	interpretative cortex may not always respond	
Release of neurotransmitters		most 'space'. Damage means less ability to feel pain.	as Penfield had concluded.	
Electrical signal causes vesicles (in presynaptic		Visual area: Damage to left hemisphere affects right		
terminal button) to release neurotransmitter into	Nucleus	visual field of each eye and vice versa.		
synaptic cleft.		Auditory area: damage can lead to deafness.		
Reuptake of neurotransmitter		Language area: usually in left hemisphere only. Broca's		
Neurotransmitter in synaptic cleft attaches to postsynaptic receptor sites. Chemical message		area: damage leads to difficulty remembering and forming words. Wernicke's area: damage leads to		
turns into electrical message. Remaining		difficulty understanding and producing meaningful		
neurotransmitter is reabsorbed.	Myelin sheath Node of Ranvier	speech.		
Excitation and inhibition		speech.		
Excitatory neurotransmitter increases				
postsynaptic neuron's charge, more likely to fire.				
Inhibitory neurotransmitter increases negative				
charge, less likely to fire.				
Summation				
More excitatory then inhibitory signals means that				
neuron fires, creating an electrical impulse.				
		I		

Unit 2 Brain & Neuropsychology Knowledge Organiser

An introduction to neuropsychology							
Cognitive neuroscience	Tulving's gold memory study	SCANNING ⁻	TECHNIQUES				
Aims to create a detailed map of localised functions in the brain. Structure & function of the brain relates to behaviour	AIM To investigate if episodic memories produce different blood flow patterns		EVALUATION				
 Frontal lobe and motor area: movement. Temporal lobe and amygdala: processes emotion and aggression. Structure & function of the brain relates to cognition Different types of memory are in different areas of the brain. Cognitive neuroscience and mental illness Low serotonin affects thinking (e.g. suicidal thoughts) and behaviour (low mood, depression). 	to semantic ones. METHOD 6 p'ts injected with radioactive gold. Repeated measures used with 4 episodic and 4 semantic memory trails. Monitored blood flow using PET scan. RESULTS Different blood flow in 3/6 pt's. Semantic memories in posterior cortex.	CT SCANS Large doughnut shaped scanner that rotates. Takes a lot of X rays of brain which are combined to give a detailed picture.	Strength: Quality is higher than traditional X rays. Weakness: High levels of radiation and only produces still images.				
Neurological damage The importance of localisation: damage to specific areas of the brain affect certain areas/behaviours. The effects of stroke	Episodic memories in frontal cortex. CONCLUSION Episodic and semantic memories are localised. Memory has a biological basis.	PET SCANS Patient injected with radioactive glucose. Brain activity shown on computer screen.	Strengths: Shows brain in action and localisation of function.				
 When brain is deprived of oxygen areas of the brain die leading to effects on behaviour, unless other areas take over localised functions. Effects of neurological damage on motor ability Damage to motor area can lead to problems with fine and complex movement. Damage to the left hemisphere affects the right side of the body and vice versa. Effects of neurological damage on behaviour Broca's aphasia; problems producing speech. Wernicke's aphasia; problems understanding speech. 	 EVALUATION Objective evidence – evidence from brain scans is difficult to fake, producing unbiased evidence. Problems with the sample – 6 p'ts inc. Tulving and conclusion based on just 3 of the p'ts. Extra – Are there different types of memory? Episodic and semantic memories are hard to separate. Which may explain inconclusive evidence. 	fMRI SCANS Measures changes in blood oxygen levels. Displayed as a 3 D computer image.	 Weaknesses: Expensive and may be unethical because of radiation. Strengths: Superior as produces clear images without use of radiation. Weaknesses: Expensive and have to stay very still. 				