
Atoms, elements and compounds

Atom	The smallest part of an element that can exist	Have a radius of around 0.1 nanometres and have no charge (0)			
Element	Contains only one type of atom	Around 100 different elements each one is represented by a symbol e.g. O Na, Br.			
Compound	Two or more elements chemically combined	Compounds can only be separated into elements by chemical reactions.			

Central nucleus Contains protons and neutrons

Electron shells Contains electrons

•		
Name of Particle	Relative Charge	Relative Mass
Proton	+1	1
Neutron	0	1
Electron	-1	Very small

Electronic shell	Max number of electrons		
1	2		
2	8		
3	8		
4	2		

Electronic structures

Before the discovery of the Tiny solid spheres that electron, John Dalton said the Pre 1900 could not be divided solid sphere made up the different elements. JJ Thompson 's experiments (a+0+ (a+0+ (a+0+ 1897 A ball of positive charge showed that showed that an atom 'plum with negative electrons must contain small negative embedded in it pudding' charges (discovery of electrons). Ernest Rutherford's alpha particle 1909 Positively charge nucleus scattering experiment showed + nuclear at the centre surrounded that the mass was concentrated at model negative electrons the centre of the atom. Niels Bohr proposed that electrons 1913 **Electrons** orbited in fixed shells; this was **Bohr** orbit the nucleus at supported by experimental specific distances model observations.

The development of the model of the atom

Rutherford's scattering

James Chadwick

Provided the evidence to show the existence of neutrons within the nucleus

Relative electrical charges of subatomic particles

number	nucleus			
Atomic number	The number of protons in the atom	Number of electrons = number of protons		

Trilogy Chemistry
Topic 1 H
Atomic structure
and periodic table
part 1

A beam of alpha particles are directed at a very thin gold foil

- + -

Most of the alpha particles passed right through.

A few (+) alpha particles were deflected by the positive nucleus.

A tiny number of particles reflected back from the nucleus.

Mixtures

Two or more elements or compounds not chemically combined together

Can be separated by physical processes.

Method	Description	Example	
Filtration	Separating an insoluble solid from a liquid	To get sand from a mixture of sand, salt and water.	
Crystallisation	To separate a solid from a solution	To obtain pure crystals of sodium chloride from salt water.	
Simple distillation	To separate a solvent from a solution	To get pure water from salt water.	
Fractional distillation	Separating a mixture of liquids each with different boiling points	To separate the different compounds in crude oil.	
Chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.	

Chemical equations

Word

equations

Show chemical reactions - need reactant(s) and product(s) energy always involves and energy change

Law of conservation of mass states the total mass of products = the total mass of reactants.

Symbol equations

reactants → products
magnesium + oxygen → magnesium oxide

Uses words to show reaction

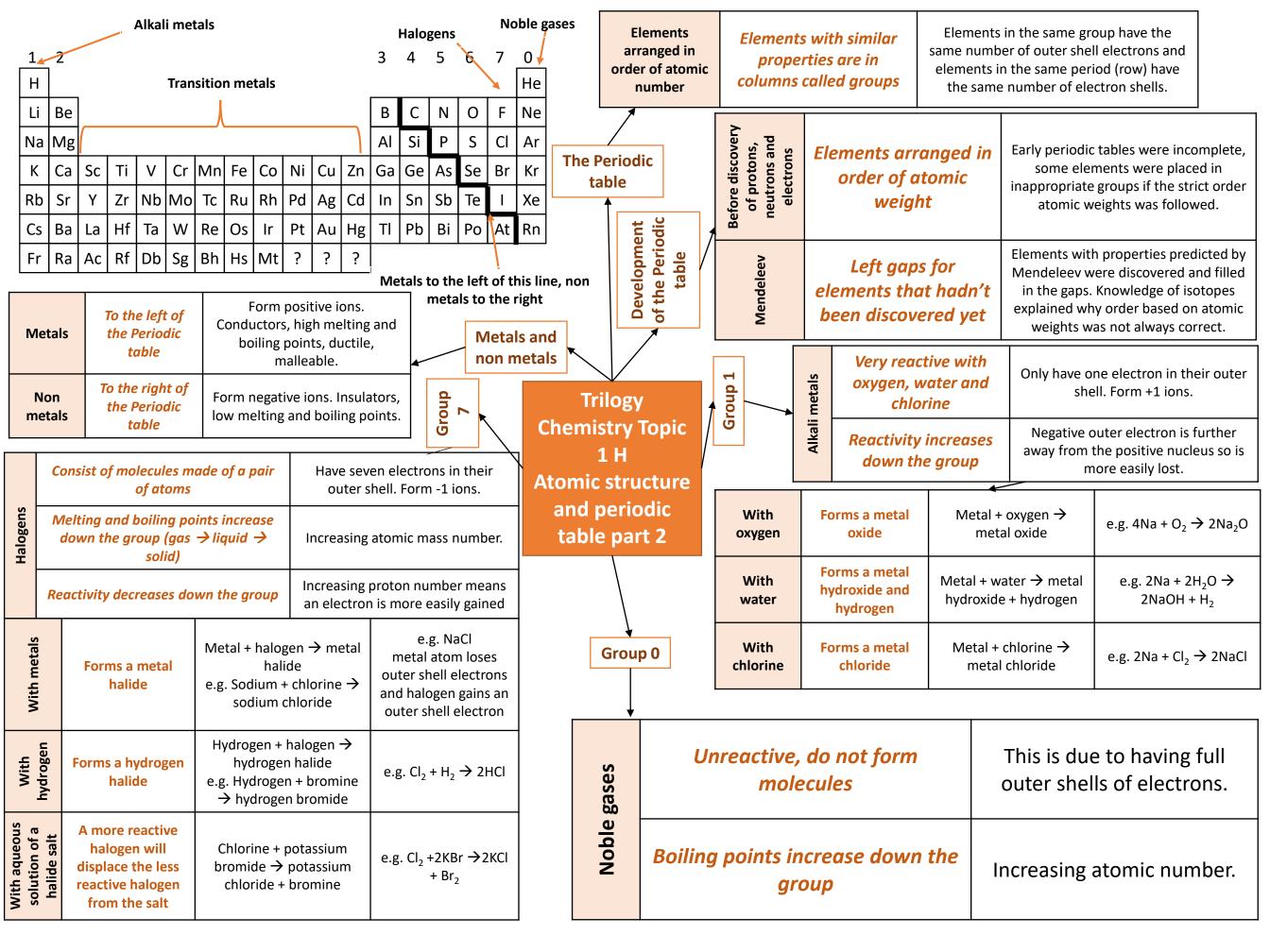
Uses symbols to show reaction reactants → products

2Mg + O₂ → 2MgO

numbers of neutrons

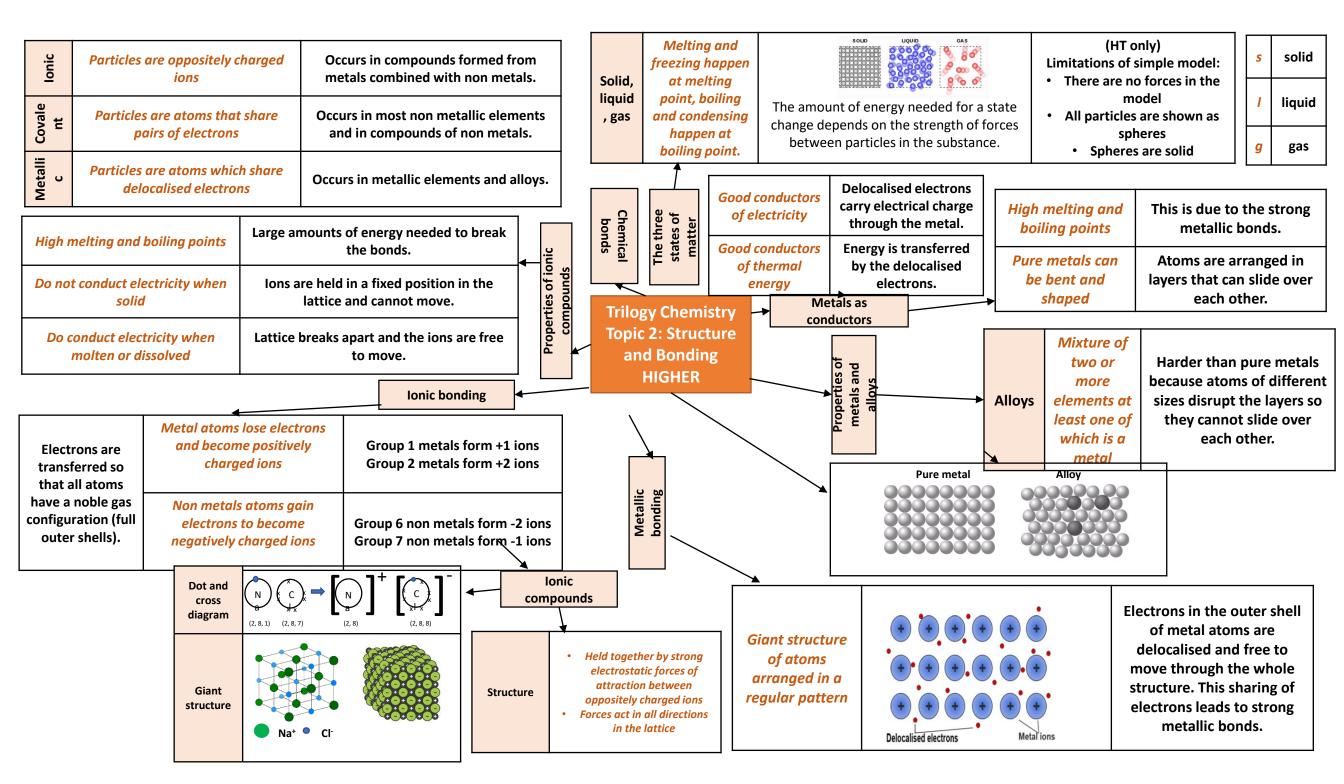
Does not show what is happening to the atoms or the number of atoms.

Shows the number of atoms and molecules in the reaction, these need to be balanced.

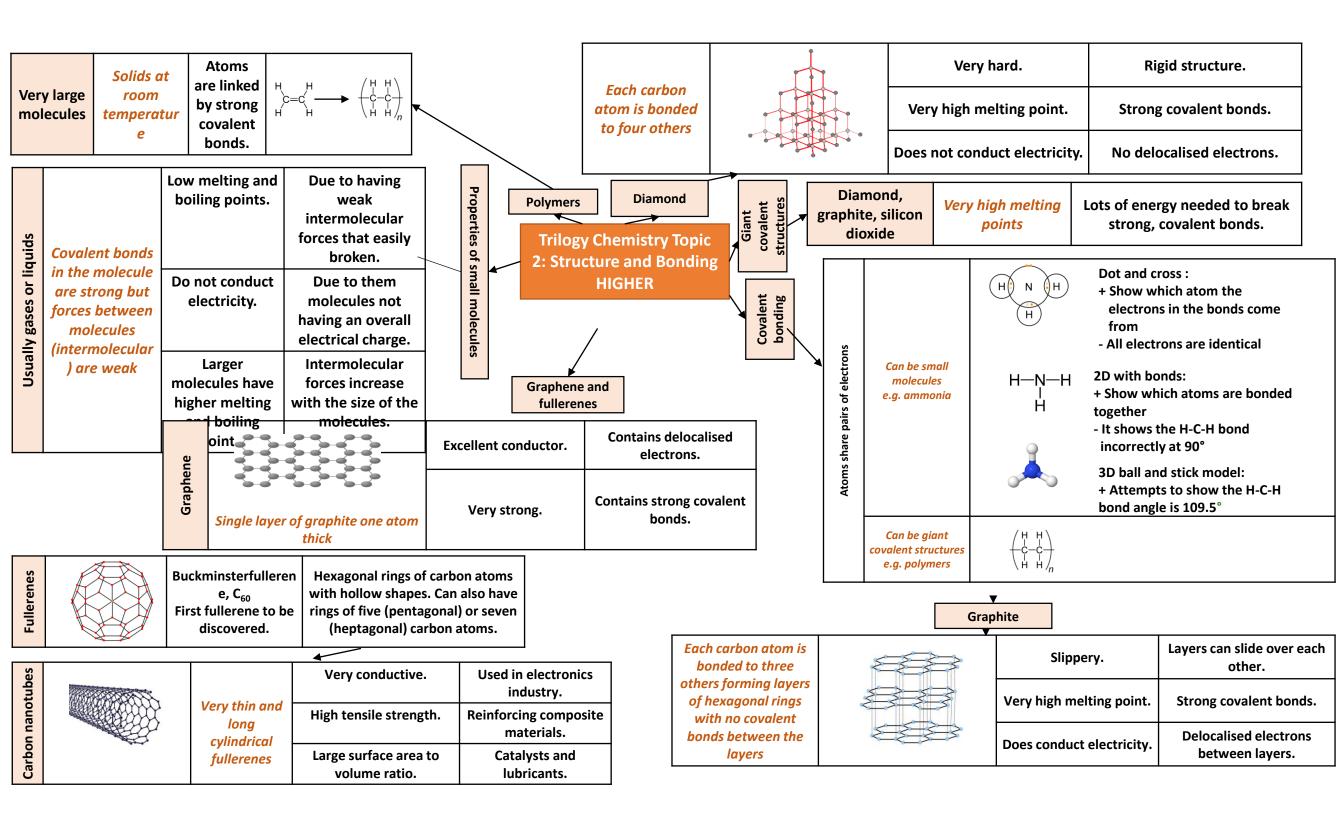

Relative atomic mass

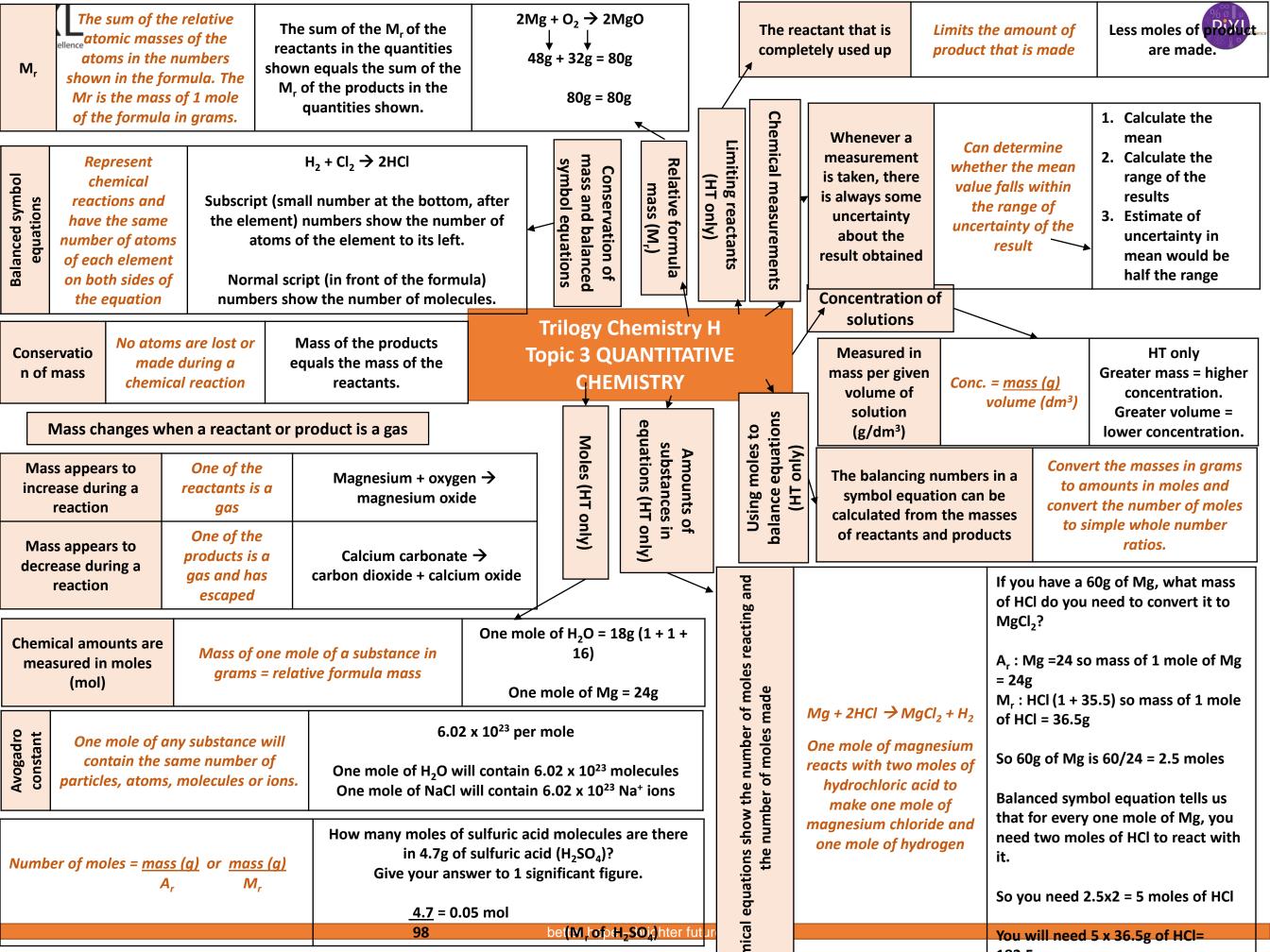
Isotopes

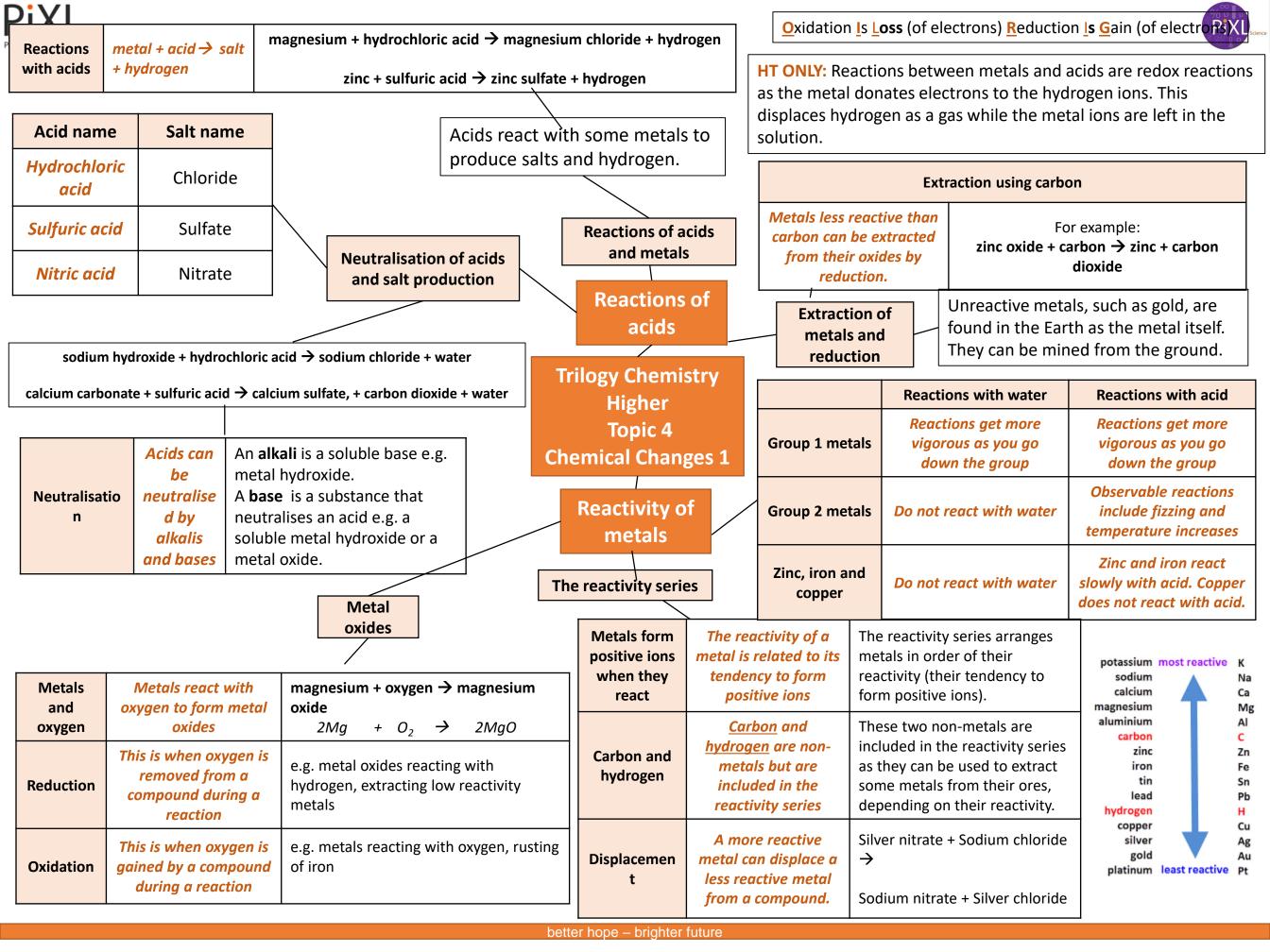
Atoms of the same element with the same number of protons and different

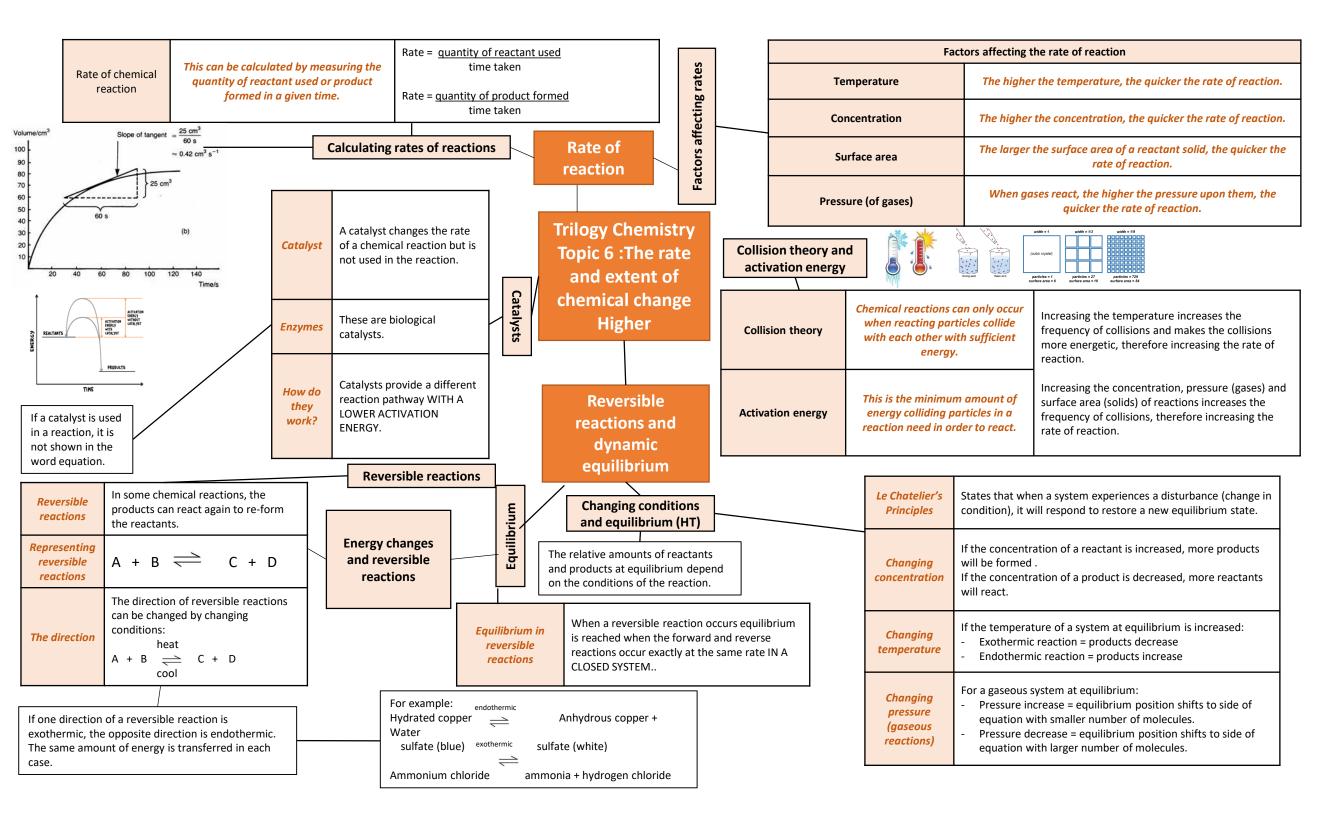

³⁵Cl (75%) and ³⁷Cl (25%)

Relative abundance = $(\% \text{ isotope } 1 \times \text{mass isotope } 1) + (\% \text{ isotope } 2 \times \text{mass isotope } 2) \div 100$ e.g. $(25 \times 37) + (75 \times 35) \div 100 = 35.5$









aqueous solu using inert el the relativ	scharged when an ution is electrolysed ectrodes depend on e reactivity of the ents involved.		Metal will be produced on the electrode if it is less reactive than hydrogen. Hydrogen will be produced if the metal is more reactive than hydrogen. Oxygen is formed at positive electrode. If you have a halide ion (0, 1°, Br¹) then you will get chlorine, bromine or iodine formed at that electrode. rolysis of aqueous solutions	el E	rocess of ectrolysi s lectrode /here do the ions go?	Splitting up using electricity Anode Cathode Cations Anions	When an ionic compound is melted or dissolved in water, the ions are free to move. These are then able to conduct electricity and are called electrolytes. Passing an electric current though electrolytes causes the ions to move to the electrodes. The positive electrode is called the anode. The negative electrode is called the cathode. Cations are positive ions and they move to the negative cathode. Anions are negative ions and they move to the positive anode.	
Strong acids	Completely ionised solutions e.g. hydrochl sulfuric acid	oric, nitric and	Strong a	lectro	lysis			
Weak acids	Only partially ionised solutions e.g. ethano acid.	•	Strong and weak ac Trilogy Chemistry Higher Lead ions Pb+				Bromide ions Br	
Hydrogen ion concentrati on	As the pH decreases (becoming a stronge hydrogen ion concentre by a factor o	er acid), the ation increases	ids	Т	Higher Topic 4 mical Changes 2		Lead ions Pb + Molten lead (II) bromide	
Soluble salts Soluble salts can be made from reacting acids with solid insoluble substances (e.g. metals, metal oxides,					Higher tier: Half equations, for example: At the cathode: $Pb^{2+} + 2e^{-} \rightarrow Pb$ At the anode: $2Br^{-} \rightarrow Br_{2} + 2e^{-}$			
Production o	Add the solid to the acid until no			using	Metals can be extracted from molten compounds using electrolysis.			
soluble salts and then crystallise to produce solid 1			universal Trails	uo e o e o e o e o e o e o e o e o e o e		This process is used when the metal is too reactive to be extracted by reduction with carbon.		
			solution		Extracting	nee	s is expensive due to large amounts of energy eded to produce the electrical current. apple: aluminium is extracted in this way.	
In neutralisation reactions, hydrogen ions react with hydroxide ions to produce water:		Acids	Acids contain hydrogen ions (H+) in aqueous solutions.		Aluminium extraction uses CRYOLITE to lower the melting point of aluminium oxide. Electrodes have to be replaced			
H ⁺ (aq) + Oh	$H^{-}_{(aq)} \rightarrow H_{2}O_{(l)}$	Alkalis	Aqueous solutions of alkalis contain hydroxide ions (OH ⁻). better hope — brighter ful		Al extraction	regularly as they are made of GRAPHITE (CARBON) which react with the oxygen produced.		

PiXI						% Ø р
Partners in excellence		Energy is taken in from the surroundings so the temperature of the surroundings decreases	 Thermal decomposition The reaction of citric acid and sodium hydrogencarbonate 		Sports injury packs	PIXL
Breaking bonds in Endothermic process		rmic Energy is transferred to the surroundings so the temperature of the surroundings increases	CombustionMany oxidation reactionsNeutralisation		Hand warmersSelf-heating cans	
Making bonds in products Exothermic p	ocess					J
Energy released make	ng new	Types of reaction		Reaction profiles	Show the overall energy reaction	change of a
bonds is greater the energy taken in brown existing bond Exothermic bonds is greater the energy taken in brown existing bond Energy needed to	aking change of	Trilogy Chemistry H		ction Solution Chemica		num amount ergy that
Exothermic bonds is greater the energy taken in brown existing bonds. Energy needed to existing bonds is greater the energy released new bonds.	er than	Topic 5 Energy changes		particles	collide with must have react is	g particles e in order to called the on energy.
			mic	Activation	energy level to reactants. As the form products,	than the e reactants
Calculate the overall energy change for the forward reaction N ₂ + 3H ₂ 2NH ₃ Bond energies (in kJ/mol): H-H 436, H-N 391, NN 945			Endotherr	Reactants Time	transferred f surroundings to mixture. The tem the surrounding because energy	the reaction nperature of s decreases
Bond energies (in kJ/mol): H-H				during the re	I	
Bond breaking: 945 + (3 x 436) = 945 + 1308 = 2253 kJ/mol Bond making: 6 x 391 = 2346 kJ/mol Overall energy change = 2253 - 2346 = -93kJ/mol			mic	Activation energy Reactants	y level than the When the react products, er transferred	reactants. tants form nergy is to the
Therefore reaction is exo		Exothermic	Produc	surrounding temperature surroundings because energy during the re	of the increases is released	
better hope – brighter future						

